-
1
-
-
34247392185
-
Full color emissive microdisplay using light emitting polymer
-
G. Bodammer, A. Buckley, D. Burns, C. Giebeler, J. Gourlay, A. Graham, M. Newsam, R. Monteith, D. Nicol, P. Parmiter, D. Steven, I. Underwood, C. Wilkinson, S. Whitelegg, R. Woodburn, and J. Wright, "Full color emissive microdisplay using light emitting polymer," in Proc. IDRC 2003, pp. 34-37.
-
(2003)
Proc. IDRC
, pp. 34-37
-
-
Bodammer, G.1
Buckley, A.2
Burns, D.3
Giebeler, C.4
Gourlay, J.5
Graham, A.6
Newsam, M.7
Monteith, R.8
Nicol, D.9
Parmiter, P.10
Steven, D.11
Underwood, I.12
Wilkinson, C.13
Whitelegg, S.14
Woodburn, R.15
Wright, J.16
-
2
-
-
34247385260
-
Biomolecule analyzer with detector array and filter device,
-
U.S. Patent 5 936 730, Aug. 10
-
B. M. Foley, W. Jiang, D. H. Hartman, H. Yu, and S. Gallagher, "Biomolecule analyzer with detector array and filter device," U.S. Patent 5 936 730, Aug. 10, 1999.
-
(1999)
-
-
Foley, B.M.1
Jiang, W.2
Hartman, D.H.3
Yu, H.4
Gallagher, S.5
-
3
-
-
7744243123
-
High-density matrix-addressable AIInGaN-based 368 nm microarray light-entitting diodes
-
Nov
-
C.-W. Jeon, H. W. Choi, E. Gu, and M. D. Dawson, "High-density matrix-addressable AIInGaN-based 368 nm microarray light-entitting diodes," IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2421-2423, Nov. 2004.
-
(2004)
IEEE Photon. Technol. Lett
, vol.16
, Issue.11
, pp. 2421-2423
-
-
Jeon, C.-W.1
Choi, H.W.2
Gu, E.3
Dawson, M.D.4
-
4
-
-
31144475911
-
Microplasmas and applications
-
Feb. 7
-
K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," J. Phys. D, Appl. Phys., vol. 39, no. 3, pp. R55-R70, Feb. 7, 2006.
-
(2006)
J. Phys. D, Appl. Phys
, vol.39
, Issue.3
-
-
Becker, K.H.1
Schoenbach, K.H.2
Eden, J.G.3
-
5
-
-
32444449402
-
One quarter million (500 × 500) pixel arrays of silicon microcavity plasma devices: Luminous efficacy above 6 lumens/watt with Ne/50% Xe mixtures and a green phosphor
-
Feb. 6
-
K.-F. Chen, N. P. Ostrom, S.-J. Park, and J. G. Eden, "One quarter million (500 × 500) pixel arrays of silicon microcavity plasma devices: Luminous efficacy above 6 lumens/watt with Ne/50% Xe mixtures and a green phosphor," Appl. Phys. Lett., vol. 88, no. 6, 061121, Feb. 6, 2006.
-
(2006)
Appl. Phys. Lett
, vol.88
, Issue.6
, pp. 061121
-
-
Chen, K.-F.1
Ostrom, N.P.2
Park, S.-J.3
Eden, J.G.4
-
6
-
-
0000680072
-
Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays
-
Jan. 22
-
S.-J. Park, J. Chen, C. Liu, and J. G. Eden, "Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays," Appl. Phys. Lett., vol. 78, no. 4, pp. 419-421, Jan. 22, 2001.
-
(2001)
Appl. Phys. Lett
, vol.78
, Issue.4
, pp. 419-421
-
-
Park, S.-J.1
Chen, J.2
Liu, C.3
Eden, J.G.4
-
7
-
-
1142304542
-
Modeling of microdischarge devices: Pyramidal structures
-
Feb. 1
-
M. J. Kushner, "Modeling of microdischarge devices: Pyramidal structures," J. Appl. Phys., vol. 95, no. 3, pp. 846-859, Feb. 1, 2004.
-
(2004)
J. Appl. Phys
, vol.95
, Issue.3
, pp. 846-859
-
-
Kushner, M.J.1
-
8
-
-
33746290450
-
Linear arrays of ceramic microcavity plasma devices (127-180 μm diameter) driven by buried coplanar electrodes: Shaping the intracavity electric field and emission profile
-
Jul. 17
-
S.-J. Park, T. M. Spinka, and J. G. Eden, "Linear arrays of ceramic microcavity plasma devices (127-180 μm diameter) driven by buried coplanar electrodes: Shaping the intracavity electric field and emission profile," Appl. Phys. Lett., vol. 89, 031502, Jul. 17, 2006.
-
(2006)
Appl. Phys. Lett
, vol.89
, pp. 031502
-
-
Park, S.-J.1
Spinka, T.M.2
Eden, J.G.3
-
9
-
-
31644441807
-
2 or Ne at high power loadings
-
Jan. 15
-
2 or Ne at high power loadings," J. Appl. Phys., vol. 99, no. 2, 026107, Jan. 15, 2006.
-
(2006)
J. Appl. Phys
, vol.99
, Issue.2
, pp. 026107
-
-
Park, S.-J.1
Kim, K.-S.2
Eden, J.G.3
|