메뉴 건너뛰기




Volumn 10, Issue 1, 2006, Pages 47-66

Pruning extensions to stacking

Author keywords

ensemble learning; Machine learning; pruning; stacking

Indexed keywords

LEARNING SYSTEMS;

EID: 34147111922     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2006-10104     Document Type: Article
Times cited : (5)

References (36)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine learning 24 (1996), 123-174.
    • (1996) Machine Learning , vol.24 , pp. 123-174
    • Breiman, L.1
  • 3
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • L. Breiman, Stacked regressions, Machine Learning 24 (1996), 49-64.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 4
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • L. Breiman, Randomizing outputs to increase prediction accuracy, Machine Learning 40(3) (2000), 229-242.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 5
  • 6
    • 35248863524 scopus 로고    scopus 로고
    • Ensemble construction via designed output distortion
    • Proceedings of the 4th International Workshop on Multiple Classifier Systems Springer-Verlag
    • S. Christensen, Ensemble Construction via Designed Output Distortion, (Vol. 2709), In Proceedings of the 4th International Workshop on Multiple Classifier Systems, LNCS, 2003, 286-295, Springer-Verlag.
    • (2003) LNCS , vol.2709 , pp. 286-295
    • Christensen, S.1
  • 7
    • 2542484580 scopus 로고    scopus 로고
    • Comparing bayes model averaging and stacking when model approximation error cannot be ignored
    • C. Clarke, Comparing bayes model averaging and stacking when model approximation error cannot be ignored, Journal of Machine Learning Research 4 (2003), 683-712.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 683-712
    • Clarke, C.1
  • 8
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Proceedings of the 11th European Conference on Machine Learning Springer
    • P. Cunningham and J. Carney, Diversity versus quality in classification ensembles based on feature selection, (Vol. 1810), In Proceedings of the 11th European Conference on Machine Learning, LNCS, Springer, 2000, 109-116.
    • (2000) LNCS , vol.1810 , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 9
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • T. Dietterich, Approximate statistical test for comparing supervised classification learning algorithms, Neural Computation 10(7) (1998), 1895-1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.1
  • 10
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Proceedings of the 1st International Workshop on Multiple Classifer Systems Springer-Verlag
    • T. Dietterich, Ensemble Methods in Machine Learning, (Vol 1857), In Proceedings of the 1st International Workshop on Multiple Classifer Systems. LNCS, Springer-Verlag, 2000, 1-10.
    • (2000) LNCS , vol.1857 , pp. 1-10
    • Dietterich, T.1
  • 12
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Kluwer
    • S. Dzeroski and B. ?Senko, Is combining classifiers with stacking better than selecting the best one? Machine Learning 54(3) (2004), 255-273, Kluwer.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Senko, B.2
  • 21
    • 0011047871 scopus 로고    scopus 로고
    • Dynamical selection of learning algorithms
    • Fisher and H.-J Lenz, eds, New York Springer
    • C.J. Merz, Dynamical selection of learning algorithms, in: Learning from data, artificial intelligence and statistics, Fisher and H.-J. Lenz, eds, New York: Springer, 1996
    • (1996) Learning from Data, Artificial Intelligence and Statistics
    • Merz, C.J.1
  • 22
    • 0032675169 scopus 로고    scopus 로고
    • A principal components approach to combining regression estimates
    • Kluwer
    • C. Merz and M. Pazzani, A principal components approach to combining regression estimates, Machine Learning 36 (1999), 9-32, Kluwer.
    • (1999) Machine Learning , vol.36 , pp. 9-32
    • Merz, C.1    Pazzani, M.2
  • 23
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R.J Mammone, ed Chapman and Hall
    • M.P. Perrone and L.N. Cooper, When Networks Disagree: Ensemble Methods for hybrid neural networks, in: Neural Networks for speech and image processing, R.J. Mammone, ed., Chapman and Hall, 1993.
    • (1993) Neural Networks for speech and image processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 25
    • 35048851039 scopus 로고    scopus 로고
    • Dynamic integration of regression models
    • Proceedings of the 5th International Multiple Classifier Systems Workshop Springer
    • N. Rooney, D. Patterson, S. Anand and A. Tsymbal, Dynamic Integration of regression models, In Proceedings of the 5th International Multiple Classifier Systems Workshop, LNCS, Springer, 2004, 164-173.
    • (2004) LNCS , pp. 164-173
    • Rooney, N.1    Patterson, D.2    Anand, S.3    Tsymbal, A.4
  • 28
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • R. Setiono, W.K. Leow and J. Zurada, Extraction of rules from artificial neural networks for nonlinear regression, IEEE Transactions on Neural Networks 13(3) (2002), 564-577.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.3
  • 32
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • Elsevier
    • A. Tsymbal, S. Puuronen and D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion 4 (2003), 87-100, Elsevier.
    • (2003) Information Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.3
  • 34
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert, Stacked generalization, Neural Networks 5 (1992), 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 35
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensemble of classifiers based on different subsets to minimize generalization error
    • Springer-Verlag
    • G. Zenobi and P. Cunningham, Using Diversity in Preparing Ensemble of Classifiers Based on Different Subsets to Minimize Generalization Error, In Proceedings of the 12th European Conference on Machine Learning, Springer-Verlag, 2001, 576-587.
    • (2001) Proceedings of the 12th European Conference on Machine Learning , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 36
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Elsevier
    • Z. Zhou, J.Wu and W. Tang, Ensembling neural networks: many could be better than all, Artificial Intelligence 137(1-2) (2002), 239-263, Elsevier.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.