-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine learning 24 (1996), 123-174.
-
(1996)
Machine Learning
, vol.24
, pp. 123-174
-
-
Breiman, L.1
-
3
-
-
0030196364
-
Stacked regressions
-
L. Breiman, Stacked regressions, Machine Learning 24 (1996), 49-64.
-
(1996)
Machine Learning
, vol.24
, pp. 49-64
-
-
Breiman, L.1
-
4
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
L. Breiman, Randomizing outputs to increase prediction accuracy, Machine Learning 40(3) (2000), 229-242.
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 229-242
-
-
Breiman, L.1
-
6
-
-
35248863524
-
Ensemble construction via designed output distortion
-
Proceedings of the 4th International Workshop on Multiple Classifier Systems Springer-Verlag
-
S. Christensen, Ensemble Construction via Designed Output Distortion, (Vol. 2709), In Proceedings of the 4th International Workshop on Multiple Classifier Systems, LNCS, 2003, 286-295, Springer-Verlag.
-
(2003)
LNCS
, vol.2709
, pp. 286-295
-
-
Christensen, S.1
-
7
-
-
2542484580
-
Comparing bayes model averaging and stacking when model approximation error cannot be ignored
-
C. Clarke, Comparing bayes model averaging and stacking when model approximation error cannot be ignored, Journal of Machine Learning Research 4 (2003), 683-712.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 683-712
-
-
Clarke, C.1
-
8
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
Proceedings of the 11th European Conference on Machine Learning Springer
-
P. Cunningham and J. Carney, Diversity versus quality in classification ensembles based on feature selection, (Vol. 1810), In Proceedings of the 11th European Conference on Machine Learning, LNCS, Springer, 2000, 109-116.
-
(2000)
LNCS
, vol.1810
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
9
-
-
0000259511
-
Approximate statistical test for comparing supervised classification learning algorithms
-
T. Dietterich, Approximate statistical test for comparing supervised classification learning algorithms, Neural Computation 10(7) (1998), 1895-1923.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.1
-
10
-
-
80053403826
-
Ensemble methods in machine learning
-
Proceedings of the 1st International Workshop on Multiple Classifer Systems Springer-Verlag
-
T. Dietterich, Ensemble Methods in Machine Learning, (Vol 1857), In Proceedings of the 1st International Workshop on Multiple Classifer Systems. LNCS, Springer-Verlag, 2000, 1-10.
-
(2000)
LNCS
, vol.1857
, pp. 1-10
-
-
Dietterich, T.1
-
12
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Kluwer
-
S. Dzeroski and B. ?Senko, Is combining classifiers with stacking better than selecting the best one? Machine Learning 54(3) (2004), 255-273, Kluwer.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Senko, B.2
-
15
-
-
84867091494
-
Dynamic classifier selection
-
Springer-Verlag
-
G. Giacinto and F. Roli, Dynamic Classifier Selection, (Vol. 1857), In Proceedings of the 1st International Workshop on Multiple Classifier Systems, LNCS, Springer-Verlag, 2000, 177-189.
-
(2000)
Proceedings of the 1st International Workshop on Multiple Classifier Systems
, vol.1857
, pp. 177-189
-
-
Giacinto, G.1
Roli, F.2
-
19
-
-
85054435084
-
Neural networks ensembles: Cross validation, and active learning
-
MIT Press
-
A. Krogh and J. Vedelsby, Neural Networks Ensembles, Cross validation, and Active Learning, Advances in Neural Information Processing Systems, MIT Press, 1995, 231-238.
-
(1995)
Advances in Neural Information Processing Systems
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
21
-
-
0011047871
-
Dynamical selection of learning algorithms
-
Fisher and H.-J Lenz, eds, New York Springer
-
C.J. Merz, Dynamical selection of learning algorithms, in: Learning from data, artificial intelligence and statistics, Fisher and H.-J. Lenz, eds, New York: Springer, 1996
-
(1996)
Learning from Data, Artificial Intelligence and Statistics
-
-
Merz, C.J.1
-
22
-
-
0032675169
-
A principal components approach to combining regression estimates
-
Kluwer
-
C. Merz and M. Pazzani, A principal components approach to combining regression estimates, Machine Learning 36 (1999), 9-32, Kluwer.
-
(1999)
Machine Learning
, vol.36
, pp. 9-32
-
-
Merz, C.1
Pazzani, M.2
-
23
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
R.J Mammone, ed Chapman and Hall
-
M.P. Perrone and L.N. Cooper, When Networks Disagree: Ensemble Methods for hybrid neural networks, in: Neural Networks for speech and image processing, R.J. Mammone, ed., Chapman and Hall, 1993.
-
(1993)
Neural Networks for speech and image processing
-
-
Perrone, M.P.1
Cooper, L.N.2
-
25
-
-
35048851039
-
Dynamic integration of regression models
-
Proceedings of the 5th International Multiple Classifier Systems Workshop Springer
-
N. Rooney, D. Patterson, S. Anand and A. Tsymbal, Dynamic Integration of regression models, In Proceedings of the 5th International Multiple Classifier Systems Workshop, LNCS, Springer, 2004, 164-173.
-
(2004)
LNCS
, pp. 164-173
-
-
Rooney, N.1
Patterson, D.2
Anand, S.3
Tsymbal, A.4
-
26
-
-
16244382345
-
Reduced ensemble size stacking 2004
-
IEEE CS Press
-
N. Rooney, D. Patterson and C.D. Nugent, Reduced Ensemble size Stacking 2004, In Proceedings of 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), IEEE CS Press, 2004, 266-271.
-
(2004)
Proceedings of 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
, pp. 266-271
-
-
Rooney, N.1
Patterson, D.2
Nugent, C.D.3
-
28
-
-
0036565303
-
Extraction of rules from artificial neural networks for nonlinear regression
-
R. Setiono, W.K. Leow and J. Zurada, Extraction of rules from artificial neural networks for nonlinear regression, IEEE Transactions on Neural Networks 13(3) (2002), 564-577.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 564-577
-
-
Setiono, R.1
Leow, W.K.2
Zurada, J.3
-
32
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
Elsevier
-
A. Tsymbal, S. Puuronen and D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion 4 (2003), 87-100, Elsevier.
-
(2003)
Information Fusion
, vol.4
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.3
-
34
-
-
0026692226
-
Stacked generalization
-
D. Wolpert, Stacked generalization, Neural Networks 5 (1992), 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
35
-
-
84948152666
-
Using diversity in preparing ensemble of classifiers based on different subsets to minimize generalization error
-
Springer-Verlag
-
G. Zenobi and P. Cunningham, Using Diversity in Preparing Ensemble of Classifiers Based on Different Subsets to Minimize Generalization Error, In Proceedings of the 12th European Conference on Machine Learning, Springer-Verlag, 2001, 576-587.
-
(2001)
Proceedings of the 12th European Conference on Machine Learning
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
36
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Elsevier
-
Z. Zhou, J.Wu and W. Tang, Ensembling neural networks: many could be better than all, Artificial Intelligence 137(1-2) (2002), 239-263, Elsevier.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
|