메뉴 건너뛰기




Volumn , Issue , 2004, Pages 266-271

Reduced ensemble size stacking

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE INTEGRATION; LEARNING MODELS; SIZE STACKING; STACKED REGRESSION;

EID: 16244382345     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (23)
  • 1
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • Kluwer
    • Breiman, L. 1996. Stacked Regression, Machine Learning, 24:49-64, Kluwer.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 3
    • 2542484580 scopus 로고    scopus 로고
    • Comparing bayes model averaging and stacking when model approximation error cannot be ignored
    • Clarke, C. 2003. Comparing Bayes Model Averaging and Stacking when Model Approximation Error Cannot be ignored, JMLR, 4:683-712.
    • (2003) JMLR , vol.4 , pp. 683-712
    • Clarke, C.1
  • 5
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Kluwer
    • Dzeroski,S. and Senko,B. 2004. Is Combining Classifiers with Stacking better than selecting the best one? Machine Learning, 54:255-273, Kluwer.
    • (2004) Machine Learning , vol.54 , pp. 255-273
    • Dzeroski, S.1    Senko, B.2
  • 7
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K. 1998a. The random subspace method for constructing decision forests, IEEE PAMI, 20(8):832-844.
    • (1998) IEEE PAMI , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 9
  • 10
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kuncheva L.I. 2002. Switching between selection and fusion in combining classifiers: An experiment, IEEE Transactions on SMC, Part B, 32 (2), 146-156.
    • (2002) IEEE Transactions on SMC, Part B , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 11
    • 0003452586 scopus 로고
    • Combining estimates in regression and classification
    • Dept. of Statistics, University of Toronto
    • LeBlanc, M. and Tibshirani, R. 1992. Combining estimates in Regression and Classification, Technical Report, Dept. of Statistics, University of Toronto.
    • (1992) Technical Report
    • LeBlanc, M.1    Tibshirani, R.2
  • 14
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • Sydney, Australia. Morgan Kaufmann Publishers, San Francisco
    • Seewald, A. How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness, In Proceedings of the Nineteenth International Conference on Machine Learning (ICML-2002). Sydney, Australia. Morgan Kaufmann Publishers, San Francisco.
    • Proceedings of the Nineteenth International Conference on Machine Learning (ICML-2002)
    • Seewald, A.1
  • 15
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • 1996
    • Sharkey, A. 1996. On Combining Artificial Neural Nets, Connection Science 8. pp. 299-314, 1996.
    • (1996) Connection Science , vol.8 , pp. 299-314
    • Sharkey, A.1
  • 17
    • 84860096983 scopus 로고    scopus 로고
    • www.liacc.up.pt/~ltoreo/Regression/DataSets.html
  • 18
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • Elsevier
    • Tsymbal, A., Puuronen, S., Patterson, D. 2003. Ensemble feature selection with the simple Bayesian classification, Information Fusion Vol. 4:87-100, Elsevier.
    • (2003) Information Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.3
  • 20
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. 1992. Stacked Generalization, Neural Networks 5, pp. 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 21
    • 0038492736 scopus 로고    scopus 로고
    • Combining stacking with bagging to improve a learning algorithm
    • Santa Fe Institute, Santa Fe
    • Wolpert, D and Macready, W. 1996. Combining Stacking with Bagging to improve a learning algorithm, Technical Report, Santa Fe Institute, Santa Fe.
    • (1996) Technical Report
    • Wolpert, D.1    Macready, W.2
  • 22
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensemble of classifiers based on different feature subsets to minimize generalization error
    • LNCS, Springer
    • th ECML, LNCS, Vol 2167, pp. 576-587, Springer.
    • (2001) th ECML , vol.2167 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 23
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Elsevier
    • Zhou, Z, Wu, J., Tang W. 2002. Ensembling Neural Networks: Many Could Be Better than All, Artificial Intelligence, Vol. 137, no 1-2, pp. 2390263, Elsevier
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 2390263
    • Zhou, Z.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.