메뉴 건너뛰기




Volumn 207, Issue , 2006, Pages 29-64

Learning machines

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34047181003     PISSN: 14349922     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-35488-8_2     Document Type: Article
Times cited : (9)

References (108)
  • 3
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 6
    • 84974695507 scopus 로고    scopus 로고
    • L. Bobrowski and M. Krtowski. Induction of multivariate decision trees by using dipolar criteria. In D. A. Zighed, J. Komorowski, and J. M. ytkow, editors, Principles of data mining and knowledge discovery: 5th European Conference: PKDD'2000, pages 331-336, Berlin, 2000. Springer Verlag.
    • L. Bobrowski and M. Krtowski. Induction of multivariate decision trees by using dipolar criteria. In D. A. Zighed, J. Komorowski, and J. M. ytkow, editors, Principles of data mining and knowledge discovery: 5th European Conference: PKDD'2000, pages 331-336, Berlin, 2000. Springer Verlag.
  • 8
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers
    • Statistics Department, University of California, Berkeley, CA 94720, April
    • L. Breiman. Bias, variance, and arcing classifiers. Technical Report Technical Report 460, Statistics Department, University of California, Berkeley, CA 94720, April 1996.
    • (1996) Technical Report Technical Report , vol.460
    • Breiman, L.1
  • 9
    • 0003330326 scopus 로고    scopus 로고
    • Bias-variance, regularization, instability and stabilization
    • C. M. Bishop, editor, Springer
    • L. Breiman. Bias-variance, regularization, instability and stabilization. In C. M. Bishop, editor, Neural Networks and Machine Learning, pages 27-56. Springer, 1998.
    • (1998) Neural Networks and Machine Learning , pp. 27-56
    • Breiman, L.1
  • 11
    • 8344281641 scopus 로고
    • Learning classification trees
    • D. J. Hand, editor, Chapman & Hall,London, URL
    • W. Buntine. Learning classification trees. In D. J. Hand, editor, Artificial Intelligence frontiers in statistics, pages 182-201. Chapman & Hall,London, 1993. URL citeseer.nj.nec.com/buntine91learning.html.
    • (1993) Artificial Intelligence frontiers in statistics , pp. 182-201
    • Buntine, W.1
  • 12
    • 34047102727 scopus 로고
    • Target switching algorithm: A constructive learning procedure for feed-forward neural networks
    • C. Campbell and C.V. Perez. Target switching algorithm: a constructive learning procedure for feed-forward neural networks. Neural Networks, pages 1221-1240, 1995.
    • (1995) Neural Networks , pp. 1221-1240
    • Campbell, C.1    Perez, C.V.2
  • 14
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50:1873-1896, 1989.
    • (1989) International Journal of Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 16
    • 34249753618 scopus 로고
    • Soft margin classifiers
    • C. Cortes and V. Vapnik. Soft margin classifiers. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
  • 20
    • 0034562759 scopus 로고    scopus 로고
    • Similarity based methods: A general framework for classification, approximation and association
    • W. Duch. Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics, 29:937-968, 2000.
    • (2000) Control and Cybernetics , vol.29 , pp. 937-968
    • Duch, W.1
  • 22
  • 27
    • 0003000735 scopus 로고
    • Fast-learning variations on back-propagation: An empirical study
    • D. Touretzky, G. Hinton, and T. Sejnowski, editors, Pittsburg, Morgan Kaufmann, San Mateo
    • S.E. Fahlman. Fast-learning variations on back-propagation: An empirical study. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, pages 38-51, Pittsburg, 1989. Morgan Kaufmann, San Mateo.
    • (1989) Proceedings of the 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 28
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D.S. Touretzky, editor, Denver, CO, Morgan Kaufmann, San Mateo
    • S.E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524-532, Denver, CO, 1990. Morgan Kaufmann, San Mateo.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 30
    • 0027294340 scopus 로고
    • Improving model detection by nonconvergent methods
    • W. Finnoff, F. Hergert, and H.G. Zimmermann. Improving model detection by nonconvergent methods. Neural Networks, 6(6):771-783, 1993.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 31
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 33
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Computer journal, 7:149-154, 1964.
    • (1964) Computer journal , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 36
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire. A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55 (1):119-139, 1997.
    • (1997) Journal of Computer and System Science , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 38
    • 3543109140 scopus 로고    scopus 로고
    • G.M. Fung and O.L. Mangasarian. A feature selection newton method for support vector machine classification. Comput. Optim. Appl., 28(2):185-202, 2004. ISSN 0926-6003. doi: http://dx.doi.Org/10.1023/B:COAP. 0000026884.66338.df.
    • G.M. Fung and O.L. Mangasarian. A feature selection newton method for support vector machine classification. Comput. Optim. Appl., 28(2):185-202, 2004. ISSN 0926-6003. doi: http://dx.doi.Org/10.1023/B:COAP. 0000026884.66338.df.
  • 43
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximations
    • E.J. Hartman, J.D. Keeler, and J.M. Kowalski. Layered neural networks with gaussian hidden units as universal approximations. Neural Computation, 2:210-215, 1990.
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 44
    • 0001234705 scopus 로고
    • C.L. Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems, San Mateo, CA, Morgan Kaufmann
    • B. Hassibi and D.G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In C.L. Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems 5, pages 164-171, San Mateo, CA, 1993. Morgan Kaufmann.
    • (1993) Second order derivatives for network pruning: Optimal brain surgeon , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 46
    • 58049186832 scopus 로고
    • Neural Networks - A Comprehensive Foundation
    • New York
    • S. Haykin. Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int., New York, 1994.
    • (1994) Maxwell MacMillian Int
    • Haykin, S.1
  • 47
    • 84977125093 scopus 로고
    • Learning translation invariant in massively parallel networks
    • J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, Berlin, Springer-Verlag
    • G.E. Hinton. Learning translation invariant in massively parallel networks. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, Proceedings of PARLE Conference on Parallel Architectures and Languages Europe, pages 1-13, Berlin, 1987. Springer-Verlag.
    • (1987) Proceedings of PARLE Conference on Parallel Architectures and Languages Europe , pp. 1-13
    • Hinton, G.E.1
  • 48
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2:359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 51
    • 84956648339 scopus 로고    scopus 로고
    • Statistical control of RBF-like networks for classification
    • Lausanne, Switzerland, October, Springer-Verlag
    • N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like networks for classification. In 7th International Conference on Artificial Neural Networks, pages 385-390, Lausanne, Switzerland, October 1997. Springer-Verlag.
    • (1997) 7th International Conference on Artificial Neural Networks , pp. 385-390
    • Jankowski, N.1    Kadirkamanathan, V.2
  • 52
    • 34047157984 scopus 로고    scopus 로고
    • N. Jankowski, K. Grabczewski, and W. Duch. Ghostminer 3.0. FQS Poland, Fujitsu, Kraków, Poland, 2003.
    • N. Jankowski, K. Grabczewski, and W. Duch. Ghostminer 3.0. FQS Poland, Fujitsu, Kraków, Poland, 2003.
  • 56
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6:181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 64
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, II(2):164-168, 1944.
    • (1944) Quarterly Journal of Applied Mathematics , vol.2 , Issue.2 , pp. 164-168
    • Levenberg, K.1
  • 65
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • W.-Y. Loh and Y.-S. Shih. Split selection methods for classification trees. Statistica Sinica, 7:815-840, 1997.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 66
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis (with discussion)
    • W.-Y. Loh and N. Vanichsetakul. Tree-structured classification via generalized discriminant analysis (with discussion). Journal of the American Statistical Association, 83:715-728, 1988.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 715-728
    • Loh, W.-Y.1    Vanichsetakul, N.2
  • 67
    • 0031641798 scopus 로고    scopus 로고
    • Boosting classifiers regionally
    • R. Maclin. Boosting classifiers regionally. In Proceeding of AAAI, 1998.
    • (1998) Proceeding of AAAI
    • Maclin, R.1
  • 69
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 70
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • M. Mézard and J.-P. Nadal. Learning in feedforward layered networks: The tiling algorithm. Journal of Physics A, 22:2191-2204, 1989.
    • (1989) Journal of Physics A , vol.22 , pp. 2191-2204
    • Mézard, M.1    Nadal, J.-P.2
  • 72
    • 21844514350 scopus 로고
    • Automatic construction of decision trees for classification
    • W. Müller and F. Wysotzki. Automatic construction of decision trees for classification. Annals of Operations Research, 52:231-247, 1994.
    • (1994) Annals of Operations Research , vol.52 , pp. 231-247
    • Müller, W.1    Wysotzki, F.2
  • 75
    • 0003599567 scopus 로고    scopus 로고
    • Introduction to radial basis function networks
    • Technical report, Centre for Cognitive Science, University of Edinburgh
    • M. Orr. Introduction to radial basis function networks. Technical report, Centre for Cognitive Science, University of Edinburgh, 1996.
    • (1996)
    • Orr, M.1
  • 76
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • New York, NY, IEEE
    • E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In CVPR'97, pages 130-136, New York, NY, 1997. IEEE.
    • (1997) CVPR'97 , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 77
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park and I.W. Sandberg. Universal approximation using radial-basis-function networks. Neural Computation, 3(2):246-257, 1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 79
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3(2):213-225, 1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 80
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA., 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.C.1
  • 81
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 82
    • 0041992571 scopus 로고    scopus 로고
    • Well-trained PETs: Improving probability estimation trees
    • Technical Report IS-00-04, Stern School of Business, New York University
    • F. Provost and P. Domingos. Well-trained PETs: Improving probability estimation trees. Technical Report IS-00-04, Stern School of Business, New York University, 2000.
    • (2000)
    • Provost, F.1    Domingos, P.2
  • 84
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 85
    • 0013114759 scopus 로고
    • Oversearching and layered search in empirical learning
    • URL
    • J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning. In IJCAI, pages 1019-1024, 1995. URL citeseer.nj.nee.com/quinlan95oversearching.html.
    • (1995) IJCAI , pp. 1019-1024
    • Quinlan, J.R.1    Cameron-Jones, R.M.2
  • 87
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automation, 14:445-471, 1978.
    • (1978) Automation , vol.14 , pp. 445-471
    • Rissanen, J.1
  • 89
    • 34047172357 scopus 로고    scopus 로고
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In J. L. McCleland D. E. Rumelhart, editor, Parallel Distributed Processing: Explorations in Microstructure of Congnition, 1: Foundations, pages 318-362. Cambridge, 1986.
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In J. L. McCleland D. E. Rumelhart, editor, Parallel Distributed Processing: Explorations in Microstructure of Congnition, volume 1: Foundations, pages 318-362. Cambridge, 1986.
  • 91
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26 (5):1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 97
    • 0000043665 scopus 로고
    • On solving incorrectly posed problems and method of regularization
    • A.N. Tikhonov. On solving incorrectly posed problems and method of regularization. Doklady Akademii Nauk USSR, 151:501-504, 1963.
    • (1963) Doklady Akademii Nauk USSR , vol.151 , pp. 501-504
    • Tikhonov, A.N.1
  • 99
    • 0003831906 scopus 로고
    • Linear machine decision trees
    • Technical Report UMCS-1991-010, Department of Computer Science, University of Massachusetts, URL
    • P. E. Utgoff and C. E. Brodley. Linear machine decision trees. Technical Report UMCS-1991-010, Department of Computer Science, University of Massachusetts, , 1991. URL citeseer.nj.nec.com/utgoff911inear.html.
    • (1991)
    • Utgoff, P.E.1    Brodley, C.E.2
  • 100
    • 0002003139 scopus 로고
    • Back-propagation, weight elimination and time series prediction
    • Los Altos, Palo Alto, San Francisco, Morgan Kaufmann, San Mateo
    • A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Back-propagation, weight elimination and time series prediction. In Proceedings of the 1990 Connectionist Models Summer School, pages 65-80, Los Altos, Palo Alto, San Francisco, 1990. Morgan Kaufmann, San Mateo.
    • (1990) Proceedings of the 1990 Connectionist Models Summer School , pp. 65-80
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 101
    • 0000539096 scopus 로고
    • Generalization by weight elimination with application to forecasting
    • Los Altos, Palo Alto, San Francisco, Morgan Kaufmann, San Mateo
    • A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by weight elimination with application to forecasting. In Advances in Neural Information Processing Systems 3, pages 875-882, Los Altos, Palo Alto, San Francisco, 1991. Morgan Kaufmann, San Mateo.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 103
    • 85086954006 scopus 로고    scopus 로고
    • 0-norm with linear models and kernel methods. Technical report, Biowulf Technologies, 2001.
    • 0-norm with linear models and kernel methods. Technical report, Biowulf Technologies, 2001.
  • 104
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algorithms. Machine Learning, 38:257-286, 2000.
    • (2000) Machine Learning , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 106
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert. Stacked generalization. Neural Networks, 5:241-249, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-249
    • Wolpert, D.H.1
  • 107
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Morgan Kaufmann, San Francisco, CA, URL
    • B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proc. 18th International Conf. on Machine Learning, pages 609-616. Morgan Kaufmann, San Francisco, CA, 2001. URL citeseer.nj.nec.com/zadrozny01obtaining.html.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.