-
1
-
-
0141465935
-
New developments in the feature space mapping model
-
Kule, Poland, Polish Neural Networks Society
-
R. Adamczak, W. Duch, and N. Jankowski. New developments in the feature space mapping model. In Third Conference on Neural Networks and Their Applications, pages 65-70, Kule, Poland, 1997. Polish Neural Networks Society.
-
(1997)
Third Conference on Neural Networks and Their Applications
, pp. 65-70
-
-
Adamczak, R.1
Duch, W.2
Jankowski, N.3
-
2
-
-
0001089823
-
Suppor vector clustering
-
A. Ben-Hur, D. Horn, H.T. Siegelman, and V. Vapnik. Suppor vector clustering. Journal of Machine Learning Research, 2:125-137, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelman, H.T.3
Vapnik, V.4
-
3
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
5
-
-
0001424016
-
EM optimization of latent-variable density models
-
MIT Press, Cambridge, MA
-
C.M. Bishop, M. Svensén, and C.K.I. Williams. EM optimization of latent-variable density models. In Advances in Neural Information Processing Systems, volume 8. MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
6
-
-
84974695507
-
-
L. Bobrowski and M. Krtowski. Induction of multivariate decision trees by using dipolar criteria. In D. A. Zighed, J. Komorowski, and J. M. ytkow, editors, Principles of data mining and knowledge discovery: 5th European Conference: PKDD'2000, pages 331-336, Berlin, 2000. Springer Verlag.
-
L. Bobrowski and M. Krtowski. Induction of multivariate decision trees by using dipolar criteria. In D. A. Zighed, J. Komorowski, and J. M. ytkow, editors, Principles of data mining and knowledge discovery: 5th European Conference: PKDD'2000, pages 331-336, Berlin, 2000. Springer Verlag.
-
-
-
-
8
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Statistics Department, University of California, Berkeley, CA 94720, April
-
L. Breiman. Bias, variance, and arcing classifiers. Technical Report Technical Report 460, Statistics Department, University of California, Berkeley, CA 94720, April 1996.
-
(1996)
Technical Report Technical Report
, vol.460
-
-
Breiman, L.1
-
9
-
-
0003330326
-
Bias-variance, regularization, instability and stabilization
-
C. M. Bishop, editor, Springer
-
L. Breiman. Bias-variance, regularization, instability and stabilization. In C. M. Bishop, editor, Neural Networks and Machine Learning, pages 27-56. Springer, 1998.
-
(1998)
Neural Networks and Machine Learning
, pp. 27-56
-
-
Breiman, L.1
-
10
-
-
0003802343
-
-
Wadsworth, Belmont, CA
-
L. Breiman, J. H. Friedman, A. Olshen, and C. J. Stone. Classification and regression trees. Wadsworth, Belmont, CA, 1984.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, A.3
Stone, C.J.4
-
11
-
-
8344281641
-
Learning classification trees
-
D. J. Hand, editor, Chapman & Hall,London, URL
-
W. Buntine. Learning classification trees. In D. J. Hand, editor, Artificial Intelligence frontiers in statistics, pages 182-201. Chapman & Hall,London, 1993. URL citeseer.nj.nec.com/buntine91learning.html.
-
(1993)
Artificial Intelligence frontiers in statistics
, pp. 182-201
-
-
Buntine, W.1
-
12
-
-
34047102727
-
Target switching algorithm: A constructive learning procedure for feed-forward neural networks
-
C. Campbell and C.V. Perez. Target switching algorithm: a constructive learning procedure for feed-forward neural networks. Neural Networks, pages 1221-1240, 1995.
-
(1995)
Neural Networks
, pp. 1221-1240
-
-
Campbell, C.1
Perez, C.V.2
-
14
-
-
0024771664
-
Orthogonal least squares methods and their application to non-linear system identification
-
S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50:1873-1896, 1989.
-
(1989)
International Journal of Control
, vol.50
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.A.2
Luo, W.3
-
16
-
-
34249753618
-
Soft margin classifiers
-
C. Cortes and V. Vapnik. Soft margin classifiers. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
18
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Sigiials, and Systems, 2:303-314, 1989.
-
(1989)
Mathematics of Control, Sigiials, and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
20
-
-
0034562759
-
Similarity based methods: A general framework for classification, approximation and association
-
W. Duch. Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics, 29:937-968, 2000.
-
(2000)
Control and Cybernetics
, vol.29
, pp. 937-968
-
-
Duch, W.1
-
24
-
-
33846983702
-
Competent undemocratic committees
-
L. Rutkowski and J. Kacprzyk, editors, Zakopane, Poland, Springer-Verlag
-
W. Duch, L. Itert, and K. Grudzinski. Competent undemocratic committees. In L. Rutkowski and J. Kacprzyk, editors, 6th International Conference on Neural Networks and Soft Computing, pages 412-417, Zakopane, Poland, 2002. Springer-Verlag.
-
(2002)
6th International Conference on Neural Networks and Soft Computing
, pp. 412-417
-
-
Duch, W.1
Itert, L.2
Grudzinski, K.3
-
27
-
-
0003000735
-
Fast-learning variations on back-propagation: An empirical study
-
D. Touretzky, G. Hinton, and T. Sejnowski, editors, Pittsburg, Morgan Kaufmann, San Mateo
-
S.E. Fahlman. Fast-learning variations on back-propagation: An empirical study. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, pages 38-51, Pittsburg, 1989. Morgan Kaufmann, San Mateo.
-
(1989)
Proceedings of the 1988 Connectionist Models Summer School
, pp. 38-51
-
-
Fahlman, S.E.1
-
28
-
-
0000155950
-
The cascade-correlation learning architecture
-
D.S. Touretzky, editor, Denver, CO, Morgan Kaufmann, San Mateo
-
S.E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524-532, Denver, CO, 1990. Morgan Kaufmann, San Mateo.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
30
-
-
0027294340
-
Improving model detection by nonconvergent methods
-
W. Finnoff, F. Hergert, and H.G. Zimmermann. Improving model detection by nonconvergent methods. Neural Networks, 6(6):771-783, 1993.
-
(1993)
Neural Networks
, vol.6
, Issue.6
, pp. 771-783
-
-
Finnoff, W.1
Hergert, F.2
Zimmermann, H.G.3
-
31
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
33
-
-
0000615669
-
Function minimization by conjugate gradients
-
R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Computer journal, 7:149-154, 1964.
-
(1964)
Computer journal
, vol.7
, pp. 149-154
-
-
Fletcher, R.1
Reeves, C.M.2
-
36
-
-
0031211090
-
A decision theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R.E. Schapire. A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55 (1):119-139, 1997.
-
(1997)
Journal of Computer and System Science
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
37
-
-
0003684449
-
-
Springer-Verlag
-
J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
38
-
-
3543109140
-
-
G.M. Fung and O.L. Mangasarian. A feature selection newton method for support vector machine classification. Comput. Optim. Appl., 28(2):185-202, 2004. ISSN 0926-6003. doi: http://dx.doi.Org/10.1023/B:COAP. 0000026884.66338.df.
-
G.M. Fung and O.L. Mangasarian. A feature selection newton method for support vector machine classification. Comput. Optim. Appl., 28(2):185-202, 2004. ISSN 0926-6003. doi: http://dx.doi.Org/10.1023/B:COAP. 0000026884.66338.df.
-
-
-
-
43
-
-
0001683814
-
Layered neural networks with gaussian hidden units as universal approximations
-
E.J. Hartman, J.D. Keeler, and J.M. Kowalski. Layered neural networks with gaussian hidden units as universal approximations. Neural Computation, 2:210-215, 1990.
-
(1990)
Neural Computation
, vol.2
, pp. 210-215
-
-
Hartman, E.J.1
Keeler, J.D.2
Kowalski, J.M.3
-
44
-
-
0001234705
-
-
C.L. Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems, San Mateo, CA, Morgan Kaufmann
-
B. Hassibi and D.G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In C.L. Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems 5, pages 164-171, San Mateo, CA, 1993. Morgan Kaufmann.
-
(1993)
Second order derivatives for network pruning: Optimal brain surgeon
, vol.5
, pp. 164-171
-
-
Hassibi, B.1
Stork, D.G.2
-
45
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
46
-
-
58049186832
-
Neural Networks - A Comprehensive Foundation
-
New York
-
S. Haykin. Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int., New York, 1994.
-
(1994)
Maxwell MacMillian Int
-
-
Haykin, S.1
-
47
-
-
84977125093
-
Learning translation invariant in massively parallel networks
-
J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, Berlin, Springer-Verlag
-
G.E. Hinton. Learning translation invariant in massively parallel networks. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, Proceedings of PARLE Conference on Parallel Architectures and Languages Europe, pages 1-13, Berlin, 1987. Springer-Verlag.
-
(1987)
Proceedings of PARLE Conference on Parallel Architectures and Languages Europe
, pp. 1-13
-
-
Hinton, G.E.1
-
48
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2:359-366, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
49
-
-
0001940458
-
Adaptive mixture of local experts
-
R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixture of local experts. Neural Computation, 3:79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
51
-
-
84956648339
-
Statistical control of RBF-like networks for classification
-
Lausanne, Switzerland, October, Springer-Verlag
-
N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like networks for classification. In 7th International Conference on Artificial Neural Networks, pages 385-390, Lausanne, Switzerland, October 1997. Springer-Verlag.
-
(1997)
7th International Conference on Artificial Neural Networks
, pp. 385-390
-
-
Jankowski, N.1
Kadirkamanathan, V.2
-
52
-
-
34047157984
-
-
N. Jankowski, K. Grabczewski, and W. Duch. Ghostminer 3.0. FQS Poland, Fujitsu, Kraków, Poland, 2003.
-
N. Jankowski, K. Grabczewski, and W. Duch. Ghostminer 3.0. FQS Poland, Fujitsu, Kraków, Poland, 2003.
-
-
-
-
56
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6:181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
63
-
-
0000494466
-
Optimal brain damage
-
D.S. Touretzky, editor, Denver, CO, Morgan Kaufmann, San Mateo
-
Y. LeCun, J.S. Denker, and S.A. Solla. Optimal brain damage. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 598-605, Denver, CO, 1990. Morgan Kaufmann, San Mateo.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 598-605
-
-
LeCun, Y.1
Denker, J.S.2
Solla, S.A.3
-
64
-
-
0000873069
-
A method for the solution of certain non-linear problems in least squares
-
K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, II(2):164-168, 1944.
-
(1944)
Quarterly Journal of Applied Mathematics
, vol.2
, Issue.2
, pp. 164-168
-
-
Levenberg, K.1
-
65
-
-
0031312210
-
Split selection methods for classification trees
-
W.-Y. Loh and Y.-S. Shih. Split selection methods for classification trees. Statistica Sinica, 7:815-840, 1997.
-
(1997)
Statistica Sinica
, vol.7
, pp. 815-840
-
-
Loh, W.-Y.1
Shih, Y.-S.2
-
66
-
-
84950459261
-
Tree-structured classification via generalized discriminant analysis (with discussion)
-
W.-Y. Loh and N. Vanichsetakul. Tree-structured classification via generalized discriminant analysis (with discussion). Journal of the American Statistical Association, 83:715-728, 1988.
-
(1988)
Journal of the American Statistical Association
, vol.83
, pp. 715-728
-
-
Loh, W.-Y.1
Vanichsetakul, N.2
-
67
-
-
0031641798
-
Boosting classifiers regionally
-
R. Maclin. Boosting classifiers regionally. In Proceeding of AAAI, 1998.
-
(1998)
Proceeding of AAAI
-
-
Maclin, R.1
-
69
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
-
(1943)
Bulletin of Mathematical Biophysics
, vol.5
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
70
-
-
36149031331
-
Learning in feedforward layered networks: The tiling algorithm
-
M. Mézard and J.-P. Nadal. Learning in feedforward layered networks: The tiling algorithm. Journal of Physics A, 22:2191-2204, 1989.
-
(1989)
Journal of Physics A
, vol.22
, pp. 2191-2204
-
-
Mézard, M.1
Nadal, J.-P.2
-
72
-
-
21844514350
-
Automatic construction of decision trees for classification
-
W. Müller and F. Wysotzki. Automatic construction of decision trees for classification. Annals of Operations Research, 52:231-247, 1994.
-
(1994)
Annals of Operations Research
, vol.52
, pp. 231-247
-
-
Müller, W.1
Wysotzki, F.2
-
75
-
-
0003599567
-
Introduction to radial basis function networks
-
Technical report, Centre for Cognitive Science, University of Edinburgh
-
M. Orr. Introduction to radial basis function networks. Technical report, Centre for Cognitive Science, University of Edinburgh, 1996.
-
(1996)
-
-
Orr, M.1
-
76
-
-
0030673582
-
Training support vector machines: An application to face detection
-
New York, NY, IEEE
-
E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In CVPR'97, pages 130-136, New York, NY, 1997. IEEE.
-
(1997)
CVPR'97
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
77
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
J. Park and I.W. Sandberg. Universal approximation using radial-basis-function networks. Neural Computation, 3(2):246-257, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.2
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
79
-
-
0001071040
-
A resource-allocating network for function interpolation
-
J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3(2):213-225, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.2
, pp. 213-225
-
-
Platt, J.1
-
80
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
-
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA., 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.C.1
-
81
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481-1497, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
82
-
-
0041992571
-
Well-trained PETs: Improving probability estimation trees
-
Technical Report IS-00-04, Stern School of Business, New York University
-
F. Provost and P. Domingos. Well-trained PETs: Improving probability estimation trees. Technical Report IS-00-04, Stern School of Business, New York University, 2000.
-
(2000)
-
-
Provost, F.1
Domingos, P.2
-
84
-
-
33744584654
-
Induction of decision trees
-
J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.1
-
85
-
-
0013114759
-
Oversearching and layered search in empirical learning
-
URL
-
J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning. In IJCAI, pages 1019-1024, 1995. URL citeseer.nj.nee.com/quinlan95oversearching.html.
-
(1995)
IJCAI
, pp. 1019-1024
-
-
Quinlan, J.R.1
Cameron-Jones, R.M.2
-
87
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen. Modeling by shortest data description. Automation, 14:445-471, 1978.
-
(1978)
Automation
, vol.14
, pp. 445-471
-
-
Rissanen, J.1
-
89
-
-
34047172357
-
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In J. L. McCleland D. E. Rumelhart, editor, Parallel Distributed Processing: Explorations in Microstructure of Congnition, 1: Foundations, pages 318-362. Cambridge, 1986.
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In J. L. McCleland D. E. Rumelhart, editor, Parallel Distributed Processing: Explorations in Microstructure of Congnition, volume 1: Foundations, pages 318-362. Cambridge, 1986.
-
-
-
-
91
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26 (5):1651-1686, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
93
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
94
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13 (7):1443-1471, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
96
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sept
-
S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, and K.R.K. Murthy. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11:1188-1194, Sept. 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 1188-1194
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
97
-
-
0000043665
-
On solving incorrectly posed problems and method of regularization
-
A.N. Tikhonov. On solving incorrectly posed problems and method of regularization. Doklady Akademii Nauk USSR, 151:501-504, 1963.
-
(1963)
Doklady Akademii Nauk USSR
, vol.151
, pp. 501-504
-
-
Tikhonov, A.N.1
-
99
-
-
0003831906
-
Linear machine decision trees
-
Technical Report UMCS-1991-010, Department of Computer Science, University of Massachusetts, URL
-
P. E. Utgoff and C. E. Brodley. Linear machine decision trees. Technical Report UMCS-1991-010, Department of Computer Science, University of Massachusetts, , 1991. URL citeseer.nj.nec.com/utgoff911inear.html.
-
(1991)
-
-
Utgoff, P.E.1
Brodley, C.E.2
-
100
-
-
0002003139
-
Back-propagation, weight elimination and time series prediction
-
Los Altos, Palo Alto, San Francisco, Morgan Kaufmann, San Mateo
-
A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Back-propagation, weight elimination and time series prediction. In Proceedings of the 1990 Connectionist Models Summer School, pages 65-80, Los Altos, Palo Alto, San Francisco, 1990. Morgan Kaufmann, San Mateo.
-
(1990)
Proceedings of the 1990 Connectionist Models Summer School
, pp. 65-80
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
101
-
-
0000539096
-
Generalization by weight elimination with application to forecasting
-
Los Altos, Palo Alto, San Francisco, Morgan Kaufmann, San Mateo
-
A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by weight elimination with application to forecasting. In Advances in Neural Information Processing Systems 3, pages 875-882, Los Altos, Palo Alto, San Francisco, 1991. Morgan Kaufmann, San Mateo.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 875-882
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
103
-
-
85086954006
-
-
0-norm with linear models and kernel methods. Technical report, Biowulf Technologies, 2001.
-
0-norm with linear models and kernel methods. Technical report, Biowulf Technologies, 2001.
-
-
-
-
104
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algorithms. Machine Learning, 38:257-286, 2000.
-
(2000)
Machine Learning
, vol.38
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
106
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert. Stacked generalization. Neural Networks, 5:241-249, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 241-249
-
-
Wolpert, D.H.1
-
107
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
Morgan Kaufmann, San Francisco, CA, URL
-
B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proc. 18th International Conf. on Machine Learning, pages 609-616. Morgan Kaufmann, San Francisco, CA, 2001. URL citeseer.nj.nec.com/zadrozny01obtaining.html.
-
(2001)
Proc. 18th International Conf. on Machine Learning
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
|