-
1
-
-
0000357867
-
A solid element formulation for large deflection analysis of composite shell structures
-
Kim Y.H., and Lee S.W. A solid element formulation for large deflection analysis of composite shell structures. Comput. Struct. 30 (1988) 269-274
-
(1988)
Comput. Struct.
, vol.30
, pp. 269-274
-
-
Kim, Y.H.1
Lee, S.W.2
-
2
-
-
0025457448
-
On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching
-
Simo J.C., Rifai M.S., and Fox D.D. On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching. Comput. Methods Appl. Mech. Eng. 81 (1990) 91-126
-
(1990)
Comput. Methods Appl. Mech. Eng.
, vol.81
, pp. 91-126
-
-
Simo, J.C.1
Rifai, M.S.2
Fox, D.D.3
-
3
-
-
0028483483
-
Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept
-
Buchter N., Ramm E., and Roehl D. Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37 (1994) 2551-2568
-
(1994)
Int. J. Numer. Methods Eng.
, vol.37
, pp. 2551-2568
-
-
Buchter, N.1
Ramm, E.2
Roehl, D.3
-
4
-
-
0028749788
-
Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates
-
Braun M., Bischoff M., and Ramm E. Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput. Mech. 15 (1994) 1-18
-
(1994)
Comput. Mech.
, vol.15
, pp. 1-18
-
-
Braun, M.1
Bischoff, M.2
Ramm, E.3
-
5
-
-
84987045177
-
A continuum-based shell theory for non-linear applications
-
Parisch H. A continuum-based shell theory for non-linear applications. Int. J. Numer. Methods Eng. 38 (1995) 1855-1883
-
(1995)
Int. J. Numer. Methods Eng.
, vol.38
, pp. 1855-1883
-
-
Parisch, H.1
-
6
-
-
0029484165
-
An efficient assumed strain element model with six dof per node for geometrically nonlinear shells
-
Park H.C., Cho C., and Lee S.W. An efficient assumed strain element model with six dof per node for geometrically nonlinear shells. Int. J. Numer. Methods Eng. 38 (1995) 4101-4122
-
(1995)
Int. J. Numer. Methods Eng.
, vol.38
, pp. 4101-4122
-
-
Park, H.C.1
Cho, C.2
Lee, S.W.3
-
7
-
-
84989463351
-
An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element
-
Betsch P., and Stein E. An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Commun. Numer. Methods Eng. 11 (1995) 899-909
-
(1995)
Commun. Numer. Methods Eng.
, vol.11
, pp. 899-909
-
-
Betsch, P.1
Stein, E.2
-
8
-
-
0032070799
-
A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom
-
Hauptmann R., and Schweizerhof K. A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42 (1998) 49-69
-
(1998)
Int. J. Numer. Methods Eng.
, vol.42
, pp. 49-69
-
-
Hauptmann, R.1
Schweizerhof, K.2
-
9
-
-
0033895449
-
Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements
-
Sansour C., and Kollmann F.G. Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24 (2000) 435-447
-
(2000)
Comput. Mech.
, vol.24
, pp. 435-447
-
-
Sansour, C.1
Kollmann, F.G.2
-
10
-
-
0037058307
-
An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells
-
Sze K.Y., Chan W.K., and Pian T.H.H. An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int. J. Numer. Methods Eng. 55 (2002) 853-878
-
(2002)
Int. J. Numer. Methods Eng.
, vol.55
, pp. 853-878
-
-
Sze, K.Y.1
Chan, W.K.2
Pian, T.H.H.3
-
11
-
-
2442552227
-
Three-dimensional continuum finite element models for plate/shell analysis
-
Sze K.Y. Three-dimensional continuum finite element models for plate/shell analysis. Prog. Struct. Eng. Mater. 4 (2002) 400-407
-
(2002)
Prog. Struct. Eng. Mater.
, vol.4
, pp. 400-407
-
-
Sze, K.Y.1
-
12
-
-
2442494908
-
Non-conventional non-linear two-node hybrid stress-strain curved beam elements
-
Kulikov G.M., and Plotnikova S.V. Non-conventional non-linear two-node hybrid stress-strain curved beam elements. Finite Elem. Anal. Des. 40 (2004) 1333-1359
-
(2004)
Finite Elem. Anal. Des.
, vol.40
, pp. 1333-1359
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
13
-
-
0344308469
-
Finite deformation plate theory and large rigid-body motions
-
Kulikov G.M., and Plotnikova S.V. Finite deformation plate theory and large rigid-body motions. Int. J. Non-Linear Mech. 39 (2004) 1093-1109
-
(2004)
Int. J. Non-Linear Mech.
, vol.39
, pp. 1093-1109
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
14
-
-
0036972849
-
Investigation of locally loaded multilayer shells by a mixed finite-element method. 2. Geometrically nonlinear statement
-
(translated from Mekhanika Kompozitnykh Materialov 38 (2002) 815-826)
-
Kulikov G.M., and Plotnikova S.V. Investigation of locally loaded multilayer shells by a mixed finite-element method. 2. Geometrically nonlinear statement. Mech. Compos. Mater. 38 (2002) 539-546 (translated from Mekhanika Kompozitnykh Materialov 38 (2002) 815-826)
-
(2002)
Mech. Compos. Mater.
, vol.38
, pp. 539-546
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
15
-
-
0037436203
-
Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory
-
Kulikov G.M., and Plotnikova S.V. Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory. Comput. Methods Appl. Mech. Eng. 192 (2003) 851-875
-
(2003)
Comput. Methods Appl. Mech. Eng.
, vol.192
, pp. 851-875
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
16
-
-
33644600623
-
Non-linear strain-displacement equations exactly representing large rigid-body motions. Part II. Enhanced finite element technique
-
Kulikov G.M., and Plotnikova S.V. Non-linear strain-displacement equations exactly representing large rigid-body motions. Part II. Enhanced finite element technique. Comput. Methods Appl. Mech. Eng. 195 (2006) 2209-2230
-
(2006)
Comput. Methods Appl. Mech. Eng.
, vol.195
, pp. 2209-2230
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
17
-
-
15844391033
-
The application of geometrically exact shell elements to B-spline surfaces
-
Roh H.Y., and Cho M. The application of geometrically exact shell elements to B-spline surfaces. Comput. Methods Appl. Mech. Eng. 193 (2004) 2261-2299
-
(2004)
Comput. Methods Appl. Mech. Eng.
, vol.193
, pp. 2261-2299
-
-
Roh, H.Y.1
Cho, M.2
-
18
-
-
21044443461
-
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
-
Hughes T.J.R., Cottrell J.A., and Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005) 4135-4195
-
(2005)
Comput. Methods Appl. Mech. Eng.
, vol.194
, pp. 4135-4195
-
-
Hughes, T.J.R.1
Cottrell, J.A.2
Bazilevs, Y.3
-
19
-
-
0020101846
-
A simple and efficient approximation of shells via finite quadrilateral elements
-
Wempner G., Talaslidis D., and Hwang C.M. A simple and efficient approximation of shells via finite quadrilateral elements. J. Appl. Mech. 49 (1982) 115-120
-
(1982)
J. Appl. Mech.
, vol.49
, pp. 115-120
-
-
Wempner, G.1
Talaslidis, D.2
Hwang, C.M.3
-
20
-
-
0031140594
-
An explicit hybrid stabilized eighteen-node solid element for thin shell analysis
-
Sze K.Y., Yi S., and Tay M.H. An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int. J. Numer. Methods Eng. 40 (1997) 1839-1856
-
(1997)
Int. J. Numer. Methods Eng.
, vol.40
, pp. 1839-1856
-
-
Sze, K.Y.1
Yi, S.2
Tay, M.H.3
-
21
-
-
27944437398
-
Equivalent single-layer and layer-wise shell theories and rigid-body motions. Part I. Foundations
-
Kulikov G.M., and Plotnikova S.V. Equivalent single-layer and layer-wise shell theories and rigid-body motions. Part I. Foundations. Mech. Adv. Mater. Struct. 12 (2005) 275-283
-
(2005)
Mech. Adv. Mater. Struct.
, vol.12
, pp. 275-283
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
22
-
-
0030383127
-
On the assumed strain formulation for geometrically nonlinear analysis
-
Cho C., and Lee S.W. On the assumed strain formulation for geometrically nonlinear analysis. Finite Elem. Anal. Des. 24 (1996) 31-47
-
(1996)
Finite Elem. Anal. Des.
, vol.24
, pp. 31-47
-
-
Cho, C.1
Lee, S.W.2
-
23
-
-
0019610759
-
Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element
-
Hughes T.J.R., and Tezduyar T.E. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J. Appl. Mech. 48 (1981) 587-596
-
(1981)
J. Appl. Mech.
, vol.48
, pp. 587-596
-
-
Hughes, T.J.R.1
Tezduyar, T.E.2
-
24
-
-
0019574221
-
Derivation of element stiffness matrices by assumed strain distributions
-
MacNeal R.H. Derivation of element stiffness matrices by assumed strain distributions. Nucl. Eng. Des. 70 (1982) 3-12
-
(1982)
Nucl. Eng. Des.
, vol.70
, pp. 3-12
-
-
MacNeal, R.H.1
-
25
-
-
0022680557
-
A formulation of general shell elements-the use of mixed interpolation of tensorial components
-
Bathe K.J., and Dvorkin E.N. A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22 (1986) 697-722
-
(1986)
Int. J. Numer. Methods Eng.
, vol.22
, pp. 697-722
-
-
Bathe, K.J.1
Dvorkin, E.N.2
-
26
-
-
0022736020
-
{ring operator} shell element based on assumed natural coordinate strains
-
{ring operator} shell element based on assumed natural coordinate strains. J. Appl. Mech. 53 (1986) 278-290
-
(1986)
J. Appl. Mech.
, vol.53
, pp. 278-290
-
-
Park, K.C.1
Stanley, G.M.2
-
27
-
-
0035872689
-
Analysis of initially stressed multilayered shells
-
Kulikov G.M. Analysis of initially stressed multilayered shells. Int. J. Solids Struct. 38 (2001) 4535-4555
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 4535-4555
-
-
Kulikov, G.M.1
-
28
-
-
33744547235
-
Geometrically exact assumed stress-strain multilayered solid-shell elements based on the 3D analytical integration
-
Kulikov G.M., and Plotnikova S.V. Geometrically exact assumed stress-strain multilayered solid-shell elements based on the 3D analytical integration. Comput. Struct. 84 (2006) 1275-1287
-
(2006)
Comput. Struct.
, vol.84
, pp. 1275-1287
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
30
-
-
33947194650
-
Assumed stress-strain quadrilateral plate elements based on analytical and numerical integration
-
Kulikov G.M., and Plotnikova S.V. Assumed stress-strain quadrilateral plate elements based on analytical and numerical integration. Trans. TSTU 12 (2006) 107-121
-
(2006)
Trans. TSTU
, vol.12
, pp. 107-121
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
32
-
-
0031123088
-
Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element
-
Barut A., Madenci E., and Tessler A. Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element. Comput. Methods Appl. Mech. Eng. 143 (1997) 155-173
-
(1997)
Comput. Methods Appl. Mech. Eng.
, vol.143
, pp. 155-173
-
-
Barut, A.1
Madenci, E.2
Tessler, A.3
-
33
-
-
0004827224
-
Axisymmetric deformation of anisotropic multilayer shells of revolution of intricate shapes
-
(translated from Mekhanika Kompozitnykh Materialov 17 (1981) 637-645)
-
Grigolyuk E.I., and Kulikov G.M. Axisymmetric deformation of anisotropic multilayer shells of revolution of intricate shapes. Mech. Compos. Mater. 17 (1982) 437-445 (translated from Mekhanika Kompozitnykh Materialov 17 (1981) 637-645)
-
(1982)
Mech. Compos. Mater.
, vol.17
, pp. 437-445
-
-
Grigolyuk, E.I.1
Kulikov, G.M.2
-
35
-
-
0025601327
-
Finite-rotation elements for the non-linear analysis of thin shell structures
-
Basar Y., and Ding Y. Finite-rotation elements for the non-linear analysis of thin shell structures. Int. J. Solids Struct. 26 (1990) 83-97
-
(1990)
Int. J. Solids Struct.
, vol.26
, pp. 83-97
-
-
Basar, Y.1
Ding, Y.2
-
36
-
-
0027797481
-
Refined shear-deformation models for composite laminates with finite rotations
-
Basar Y., Ding Y., and Schultz R. Refined shear-deformation models for composite laminates with finite rotations. Int. J. Solids Struct. 30 (1993) 2611-2638
-
(1993)
Int. J. Solids Struct.
, vol.30
, pp. 2611-2638
-
-
Basar, Y.1
Ding, Y.2
Schultz, R.3
-
37
-
-
0021409319
-
On the finite element solution of the three-dimensional tire contact problem
-
Rothert H., Idelberger H., Jacobi W., and Laging G. On the finite element solution of the three-dimensional tire contact problem. Nucl. Eng. Des. 78 (1984) 363-375
-
(1984)
Nucl. Eng. Des.
, vol.78
, pp. 363-375
-
-
Rothert, H.1
Idelberger, H.2
Jacobi, W.3
Laging, G.4
|