-
1
-
-
0000357867
-
A solid element formulation for large deflection analysis of composite shell structures
-
Kim Y.H., Lee S.W. A solid element formulation for large deflection analysis of composite shell structures. Comput. Struct. 30:1988;269-274.
-
(1988)
Comput. Struct.
, vol.30
, pp. 269-274
-
-
Kim, Y.H.1
Lee, S.W.2
-
2
-
-
0025457448
-
On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching
-
Simo J.C., Rifai M.S., Fox D.D. On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching. Comput. Methods Appl. Mech. Eng. 81:1990;91-126.
-
(1990)
Comput. Methods Appl. Mech. Eng.
, vol.81
, pp. 91-126
-
-
Simo, J.C.1
Rifai, M.S.2
Fox, D.D.3
-
3
-
-
0028749788
-
Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates
-
Braun M., Bischoff M., Ramm E. Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput. Mech. 15:1994;1-18.
-
(1994)
Comput. Mech.
, vol.15
, pp. 1-18
-
-
Braun, M.1
Bischoff, M.2
Ramm, E.3
-
4
-
-
84987045177
-
A continuum-based shell theory for non-linear applications
-
Parisch H. A continuum-based shell theory for non-linear applications. Int. J. Numer. Methods Eng. 38:1995;1855-1883.
-
(1995)
Int. J. Numer. Methods Eng.
, vol.38
, pp. 1855-1883
-
-
Parisch, H.1
-
5
-
-
0029484165
-
An efficient assumed strain element model with six dof per node for geometrically nonlinear shells
-
Park H.C., Cho C., Lee S.W. An efficient assumed strain element model with six dof per node for geometrically nonlinear shells. Int. J. Numer. Methods Eng. 38:1995;4101-4122.
-
(1995)
Int. J. Numer. Methods Eng.
, vol.38
, pp. 4101-4122
-
-
Park, H.C.1
Cho, C.2
Lee, S.W.3
-
6
-
-
84989463351
-
An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element
-
Betsch P., Stein E. An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Commun. Numer. Methods Eng. 11:1995;899-909.
-
(1995)
Commun. Numer. Methods Eng.
, vol.11
, pp. 899-909
-
-
Betsch, P.1
Stein, E.2
-
7
-
-
0030102317
-
A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains
-
Betsch P., Gruttmann F., Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130:1996;57-79.
-
(1996)
Comput. Methods Appl. Mech. Eng.
, vol.130
, pp. 57-79
-
-
Betsch, P.1
Gruttmann, F.2
Stein, E.3
-
8
-
-
0032070799
-
A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom
-
Hauptmann R., Schweizerhof K. A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42:1998;49-69.
-
(1998)
Int. J. Numer. Methods Eng.
, vol.42
, pp. 49-69
-
-
Hauptmann, R.1
Schweizerhof, K.2
-
9
-
-
0032207517
-
A four-node solid shell element formulation with assumed strain
-
Kemp B.L., Cho C., Lee S.W. A four-node solid shell element formulation with assumed strain. Int. J. Numer. Methods Eng. 43:1998;909-924.
-
(1998)
Int. J. Numer. Methods Eng.
, vol.43
, pp. 909-924
-
-
Kemp, B.L.1
Cho, C.2
Lee, S.W.3
-
10
-
-
0345237265
-
A continuum based three-dimensional shell element for laminated structures
-
Klinkel S., Gruttmann F., Wagner W. A continuum based three-dimensional shell element for laminated structures. Comput. Struct. 71:1999;43-62.
-
(1999)
Comput. Struct.
, vol.71
, pp. 43-62
-
-
Klinkel, S.1
Gruttmann, F.2
Wagner, W.3
-
11
-
-
0033895449
-
Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements
-
Sansour C., Kollmann F.G. Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24:2000;435-447.
-
(2000)
Comput. Mech.
, vol.24
, pp. 435-447
-
-
Sansour, C.1
Kollmann, F.G.2
-
12
-
-
0037197587
-
Hybrid-stress solid elements for shell structures based upon a modified variational functional
-
Sze K.Y., Lo S.H., Yao L.Q. Hybrid-stress solid elements for shell structures based upon a modified variational functional. Int. J. Numer. Methods Eng. 53:2002;2617-2642.
-
(2002)
Int. J. Numer. Methods Eng.
, vol.53
, pp. 2617-2642
-
-
Sze, K.Y.1
Lo, S.H.2
Yao, L.Q.3
-
13
-
-
0037058307
-
An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells
-
Sze K.Y., Chan W.K., Pian T.H.H. An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int. J. Numer. Methods Eng. 55:2002;853-878.
-
(2002)
Int. J. Numer. Methods Eng.
, vol.55
, pp. 853-878
-
-
Sze, K.Y.1
Chan, W.K.2
Pian, T.H.H.3
-
15
-
-
2442552227
-
Three-dimensional continuum finite element models for plate/shell analysis
-
Sze K.Y. Three-dimensional continuum finite element models for plate/shell analysis. Prog. Struct. Eng. Mater. 4:2002;400-407.
-
(2002)
Prog. Struct. Eng. Mater.
, vol.4
, pp. 400-407
-
-
Sze, K.Y.1
-
16
-
-
0033236391
-
Comparative analysis of two algorithms for numerical solution of nonlinear static problems for multilayered anisotropic shells of revolution. 2. Account of transverse compression
-
Kulikov G.M., Plotnikova S.V. Comparative analysis of two algorithms for numerical solution of nonlinear static problems for multilayered anisotropic shells of revolution. 2. Account of transverse compression. Mech. Compos. Mater. 35:1999;293-300.
-
(1999)
Mech. Compos. Mater.
, vol.35
, pp. 293-300
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
17
-
-
0000737959
-
Finite element formulation of straight composite beams undergoing finite rotations
-
Kulikov G.M., Plotnikova S.V. Finite element formulation of straight composite beams undergoing finite rotations. Trans. Tambov State Tech. Univ. 7:2001;617-633.
-
(2001)
Trans. Tambov State Tech. Univ.
, vol.7
, pp. 617-633
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
18
-
-
0036937491
-
Investigation of locally loaded multilayered shells by a mixed finite-element method. 2. Geometrically nonlinear statement
-
Kulikov G.M., Plotnikova S.V. Investigation of locally loaded multilayered shells by a mixed finite-element method. 2. Geometrically nonlinear statement. Mech. Compos. Mater. 38:2002;539-546.
-
(2002)
Mech. Compos. Mater.
, vol.38
, pp. 539-546
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
19
-
-
0037436203
-
Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory
-
Kulikov G.M., Plotnikova S.V. Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory. Comput. Methods Appl. Mech. Eng. 192:2003;851-875.
-
(2003)
Comput. Methods Appl. Mech. Eng.
, vol.192
, pp. 851-875
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
20
-
-
0344308469
-
Finite deformation plate theory and large rigid-body motions
-
Kulikov G.M., Plotnikova S.V. Finite deformation plate theory and large rigid-body motions. Int. J. Non-Linear Mech. 39:2004;1093-1109.
-
(2004)
Int. J. Non-linear Mech.
, vol.39
, pp. 1093-1109
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
21
-
-
0020101846
-
A simple and efficient approximation of shells via finite quadrilateral elements
-
Wempner G., Talaslidis D., Hwang C.M. A simple and efficient approximation of shells via finite quadrilateral elements. J. Appl. Mech. 49:1982;115-120.
-
(1982)
J. Appl. Mech.
, vol.49
, pp. 115-120
-
-
Wempner, G.1
Talaslidis, D.2
Hwang, C.M.3
-
22
-
-
0031140594
-
An explicit hybrid stabilized eighteen-node solid element for thin shell analysis
-
Sze K.Y., Yi S., Tay M.H. An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int. J. Numer. Methods Eng. 40:1997;1839-1856.
-
(1997)
Int. J. Numer. Methods Eng.
, vol.40
, pp. 1839-1856
-
-
Sze, K.Y.1
Yi, S.2
Tay, M.H.3
-
23
-
-
0035872689
-
Analysis of initially stressed multilayered shells
-
Kulikov G.M. Analysis of initially stressed multilayered shells. Int. J. Solids Struct. 38:2001;4535-4555.
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 4535-4555
-
-
Kulikov, G.M.1
-
24
-
-
0035285513
-
Non-linear analysis of multilayered shells under initial stress
-
Kulikov G.M. Non-linear analysis of multilayered shells under initial stress. Int. J. Non-Linear Mech. 36:2001;323-334.
-
(2001)
Int. J. Non-linear Mech.
, vol.36
, pp. 323-334
-
-
Kulikov, G.M.1
-
27
-
-
0037016625
-
Simple and effective elements based upon Timoshenko-Mindlin shell theory
-
Kulikov G.M., Plotnikova S.V. Simple and effective elements based upon Timoshenko-Mindlin shell theory. Comput. Methods Appl. Mech. Eng. 191:2002;1173-1187.
-
(2002)
Comput. Methods Appl. Mech. Eng.
, vol.191
, pp. 1173-1187
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
28
-
-
0019610759
-
Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element
-
Hughes T.J.R., Tezduyar T.E. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J. Appl. Mech. 48:1981;587-596.
-
(1981)
J. Appl. Mech.
, vol.48
, pp. 587-596
-
-
Hughes, T.J.R.1
Tezduyar, T.E.2
-
29
-
-
0019574221
-
Derivation of element stiffness matrices by assumed strain distributions
-
MacNeal R.H. Derivation of element stiffness matrices by assumed strain distributions. Nucl. Eng. Design. 70:1982;3-12.
-
(1982)
Nucl. Eng. Design
, vol.70
, pp. 3-12
-
-
Macneal, R.H.1
-
30
-
-
0022680557
-
A formulation of general shell elements - The use of mixed interpolation of tensorial components
-
Bathe K.J., Dvorkin E.N. A formulation of general shell elements - the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22:1986;697-722.
-
(1986)
Int. J. Numer. Methods Eng.
, vol.22
, pp. 697-722
-
-
Bathe, K.J.1
Dvorkin, E.N.2
-
31
-
-
0017916002
-
Improvement of plate and shell finite element by mixed formulations
-
Lee S.W., Pian T.H.H. Improvement of plate and shell finite element by mixed formulations. AIAA J. 16:1978;29-34.
-
(1978)
AIAA J.
, vol.16
, pp. 29-34
-
-
Lee, S.W.1
Pian, T.H.H.2
-
32
-
-
0030383127
-
On the assumed strain formulation for geometrically nonlinear analysis
-
Cho C., Lee S.W. On the assumed strain formulation for geometrically nonlinear analysis. Finite Elements Anal. Design. 24:1996;31-47.
-
(1996)
Finite Elements Anal. Design
, vol.24
, pp. 31-47
-
-
Cho, C.1
Lee, S.W.2
-
33
-
-
0027702469
-
A three-dimensional non-linear Timoshenko beam based on the core-congruental formulation
-
Crivelli L.A., et al. A three-dimensional non-linear Timoshenko beam based on the core-congruental formulation. Int. J. Numer. Methods Eng. 36:1993;3647-3673.
-
(1993)
Int. J. Numer. Methods Eng.
, vol.36
, pp. 3647-3673
-
-
Crivelli, L.A.1
-
34
-
-
0031554580
-
The finite deformation theory for beam, plate and shell. Part I. The two-dimensional beam theory
-
Li M. The finite deformation theory for beam, plate and shell. Part I. The two-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 146:1997;53-63.
-
(1997)
Comput. Methods Appl. Mech. Eng.
, vol.146
, pp. 53-63
-
-
Li, M.1
-
35
-
-
0034602937
-
The finite deformation theory for beam, plate and shell. Part IV. The FE formulation of Mindlin plate and shell based on Green-Lagrangian strain
-
Li M., Zhan F. The finite deformation theory for beam, plate and shell. Part IV. The FE formulation of Mindlin plate and shell based on Green-Lagrangian strain. Comput. Methods Appl. Mech. Eng. 182:2000;187-203.
-
(2000)
Comput. Methods Appl. Mech. Eng.
, vol.182
, pp. 187-203
-
-
Li, M.1
Zhan, F.2
-
36
-
-
0018295243
-
Large displacement analysis of three-dimensional beam structures
-
Bathe K.J., Bolourchi S. Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14:1979;961-986.
-
(1979)
Int. J. Numer. Methods Eng.
, vol.14
, pp. 961-986
-
-
Bathe, K.J.1
Bolourchi, S.2
-
37
-
-
0024116484
-
A beam finite element non-linear theory with finite rotation
-
Cardona A., Geradin M. A beam finite element non-linear theory with finite rotation. Int. J. Numer. Methods Eng. 26:1988;2403-2438.
-
(1988)
Int. J. Numer. Methods Eng.
, vol.26
, pp. 2403-2438
-
-
Cardona, A.1
Geradin, M.2
-
38
-
-
0025468397
-
A consistent co-rotational formulation for non-linear three-dimensional beam elements
-
Crisfield M.A. A consistent co-rotational formulation for non-linear three-dimensional beam elements. Comput. Methods Appl. Mech. Eng. 81:1990;131-150.
-
(1990)
Comput. Methods Appl. Mech. Eng.
, vol.81
, pp. 131-150
-
-
Crisfield, M.A.1
-
39
-
-
0022792209
-
A three-dimensional finite strain rod model. Part II. Computational aspects
-
Simo J.C., Vu-Quoc L. A three-dimensional finite strain rod model. Part II. Computational aspects. Comput. Methods Appl. Mech. Eng. 58:1986;79-116.
-
(1986)
Comput. Methods Appl. Mech. Eng.
, vol.58
, pp. 79-116
-
-
Simo, J.C.1
Vu-Quoc, L.2
-
40
-
-
0032141939
-
The finite deformation theory for beam, plate and shell. Part III. The three-dimensional beam theory and the FE formulation
-
Li M. The finite deformation theory for beam, plate and shell. Part III. The three-dimensional beam theory and the FE formulation. Comput. Methods Appl. Mech. Eng. 162:1998;287-300.
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.162
, pp. 287-300
-
-
Li, M.1
-
41
-
-
0018020886
-
Nonlinear analysis of free-form shells by flat finite elements
-
Horrigmoe G., Bergan P.G. Nonlinear analysis of free-form shells by flat finite elements. Comput. Methods Appl. Mech. Eng. 16:1978;11-35.
-
(1978)
Comput. Methods Appl. Mech. Eng.
, vol.16
, pp. 11-35
-
-
Horrigmoe, G.1
Bergan, P.G.2
|