-
1
-
-
2442494908
-
Non-conventional non-linear two-node hybrid stress-strain curved beam elements
-
G.M. Kulikov S.V. Plotnikova Non-conventional non-linear two-node hybrid stress-strain curved beam elements Finite Elements Anal. Des. 40 2004 1333-1359
-
(2004)
Finite Elements Anal. Des.
, vol.40
, pp. 1333-1359
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
2
-
-
0344308469
-
Finite deformation plate theory and large rigid-body motions
-
G.M. Kulikov S.V. Plotnikova Finite deformation plate theory and large rigid-body motions Int. J. Non-Linear Mech. 39 2004 1093-1109
-
(2004)
Int. J. Non-Linear Mech.
, vol.39
, pp. 1093-1109
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
3
-
-
0037436203
-
Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory
-
G.M. Kulikov S.V. Plotnikova Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin shell theory Comput. Methods Appl. Mech. Engrg. 192 2003 851-875
-
(2003)
Comput. Methods Appl. Mech. Engrg.
, vol.192
, pp. 851-875
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
4
-
-
84987045177
-
A continuum-based shell theory for non-linear applications
-
H. Parisch A continuum-based shell theory for non-linear applications Int. J. Numer. Methods Engrg. 38 1995 1855-1883
-
(1995)
Int. J. Numer. Methods Engrg.
, vol.38
, pp. 1855-1883
-
-
Parisch, H.1
-
5
-
-
0032070799
-
A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom
-
R. Hauptmann K. Schweizerhof A systematic development of 'solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom Int. J. Numer. Methods Engrg. 42 1998 49-69
-
(1998)
Int. J. Numer. Methods Engrg.
, vol.42
, pp. 49-69
-
-
Hauptmann, R.1
Schweizerhof, K.2
-
6
-
-
0345237265
-
A continuum based three-dimensional shell element for laminated structures
-
S. Klinkel F. Gruttmann W. Wagner A continuum based three-dimensional shell element for laminated structures Comput. Struct. 71 1999 43-62
-
(1999)
Comput. Struct.
, vol.71
, pp. 43-62
-
-
Klinkel, S.1
Gruttmann, F.2
Wagner, W.3
-
7
-
-
0037058307
-
An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells
-
K.Y. Sze W.K. Chan T.H.H. Pian An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells Int. J. Numer. Methods Engrg. 55 2002 853-878
-
(2002)
Int. J. Numer. Methods Engrg.
, vol.55
, pp. 853-878
-
-
Sze, K.Y.1
Chan, W.K.2
Pian, T.H.H.3
-
8
-
-
0025457448
-
On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching
-
J.C. Simo M.S. Rifai D.D. Fox On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching Comput. Methods Appl. Mech. Engrg. 81 1990 91-126
-
(1990)
Comput. Methods Appl. Mech. Engrg.
, vol.81
, pp. 91-126
-
-
Simo, J.C.1
Rifai, M.S.2
Fox, D.D.3
-
9
-
-
15844391033
-
The application of geometrically exact shell elements to B-spline surfaces
-
H.Y. Roh M. Cho The application of geometrically exact shell elements to B-spline surfaces Comput. Methods Appl. Mech. Engrg. 193 2004 2261-2299
-
(2004)
Comput. Methods Appl. Mech. Engrg.
, vol.193
, pp. 2261-2299
-
-
Roh, H.Y.1
Cho, M.2
-
10
-
-
0020101846
-
A simple and efficient approximation of shells via finite quadrilateral elements
-
G. Wempner D. Talaslidis C.M. Hwang A simple and efficient approximation of shells via finite quadrilateral elements Trans. ASME J. Appl. Mech. 49 1982 115-120
-
(1982)
Trans. ASME J. Appl. Mech.
, vol.49
, pp. 115-120
-
-
Wempner, G.1
Talaslidis, D.2
Hwang, C.M.3
-
11
-
-
0000357867
-
A solid element formulation for large deflection analysis of composite shell structures
-
Y.H. Kim S.W. Lee A solid element formulation for large deflection analysis of composite shell structures Comput. Struct. 30 1988 269-274
-
(1988)
Comput. Struct.
, vol.30
, pp. 269-274
-
-
Kim, Y.H.1
Lee, S.W.2
-
12
-
-
0029484165
-
An efficient assumed strain element model with six dof per node for geometrically nonlinear shells
-
H.C. Park C. Cho S.W. Lee An efficient assumed strain element model with six dof per node for geometrically nonlinear shells Int. J. Numer. Methods Engrg. 38 1995 4101-4122
-
(1995)
Int. J. Numer. Methods Engrg.
, vol.38
, pp. 4101-4122
-
-
Park, H.C.1
Cho, C.2
Lee, S.W.3
-
13
-
-
0031140594
-
An explicit hybrid stabilized eighteen-node solid element for thin shell analysis
-
K.Y. Sze S. Yi M.H. Tay An explicit hybrid stabilized eighteen-node solid element for thin shell analysis Int. J. Numer. Methods Engrg. 40 1997 1839-1856
-
(1997)
Int. J. Numer. Methods Engrg.
, vol.40
, pp. 1839-1856
-
-
Sze, K.Y.1
Yi, S.2
Tay, M.H.3
-
14
-
-
0037016625
-
Simple and effective elements based upon Timoshenko-Mindlin shell theory
-
G.M. Kulikov S.V. Plotnikova Simple and effective elements based upon Timoshenko-Mindlin shell theory Comput. Methods Appl. Mech. Engrg. 191 2002 1173-1187
-
(2002)
Comput. Methods Appl. Mech. Engrg.
, vol.191
, pp. 1173-1187
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
15
-
-
0035285513
-
Non-linear analysis of multilayered shells under initial stress
-
G.M. Kulikov Non-linear analysis of multilayered shells under initial stress Int. J. Non-Linear Mech. 36 2001 323-334
-
(2001)
Int. J. Non-Linear Mech.
, vol.36
, pp. 323-334
-
-
Kulikov, G.M.1
-
16
-
-
0035872689
-
Analysis of initially stressed multilayered shells
-
G.M. Kulikov Analysis of initially stressed multilayered shells Int. J. Solids Struct. 38 2001 4535-4555
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 4535-4555
-
-
Kulikov, G.M.1
-
17
-
-
0015672278
-
On the hybrid stress finite element model for incremental analysis of large deflection problems
-
S. Atluri On the hybrid stress finite element model for incremental analysis of large deflection problems Int. J. Solids Struct. 9 1973 1177-1191
-
(1973)
Int. J. Solids Struct.
, vol.9
, pp. 1177-1191
-
-
Atluri, S.1
-
18
-
-
0017454011
-
Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method
-
P.L. Boland T.H.H. Pian Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method Comput. Struct. 7 1977 1-12
-
(1977)
Comput. Struct.
, vol.7
, pp. 1-12
-
-
Boland, P.L.1
Pian, T.H.H.2
-
19
-
-
0030383127
-
On the assumed strain formulation for geometrically non-linear analysis
-
C. Cho S.W. Lee On the assumed strain formulation for geometrically non-linear analysis Finite Elements Anal. Des. 24 1996 31-47
-
(1996)
Finite Elements Anal. Des.
, vol.24
, pp. 31-47
-
-
Cho, C.1
Lee, S.W.2
-
21
-
-
0019610759
-
Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element
-
T.J.R. Hughes T.E. Tezduyar Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element Trans. ASME J. Appl. Mech. 48 1981 587-596
-
(1981)
Trans. ASME J. Appl. Mech.
, vol.48
, pp. 587-596
-
-
Hughes, T.J.R.1
Tezduyar, T.E.2
-
22
-
-
0022680557
-
A formulation of general shell elements-the use of mixed interpolation of tensorial components
-
K.J. Bathe E.N. Dvorkin A formulation of general shell elements-the use of mixed interpolation of tensorial components Int. J. Numer. Methods Engrg. 22 1986 697-722
-
(1986)
Int. J. Numer. Methods Engrg.
, vol.22
, pp. 697-722
-
-
Bathe, K.J.1
Dvorkin, E.N.2
-
23
-
-
84989463351
-
An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element
-
P. Betsch E. Stein An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element Commun. Numer. Methods Engrg. 11 1995 899-909
-
(1995)
Commun. Numer. Methods Engrg.
, vol.11
, pp. 899-909
-
-
Betsch, P.1
Stein, E.2
-
24
-
-
0030102317
-
A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains
-
P. Betsch F. Gruttmann E. Stein A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains Comput. Methods Appl. Mech. Engrg. 130 1996 57-79
-
(1996)
Comput. Methods Appl. Mech. Engrg.
, vol.130
, pp. 57-79
-
-
Betsch, P.1
Gruttmann, F.2
Stein, E.3
-
25
-
-
0025601327
-
Finite-rotation elements for the non-linear analysis of thin shell structures
-
Y. Basar Y. Ding Finite-rotation elements for the non-linear analysis of thin shell structures Int. J. Solids Struct. 26 1990 83-97
-
(1990)
Int. J. Solids Struct.
, vol.26
, pp. 83-97
-
-
Basar, Y.1
Ding, Y.2
-
26
-
-
0033895449
-
Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements
-
C. Sansour F.G. Kollmann Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements Comput. Mech. 24 2000 435-447
-
(2000)
Comput. Mech.
, vol.24
, pp. 435-447
-
-
Sansour, C.1
Kollmann, F.G.2
-
27
-
-
0028749788
-
Non-linear shell formulations for complete three-dimensional constitutive laws including composites and laminates
-
M. Braun M. Bischoff E. Ramm Non-linear shell formulations for complete three-dimensional constitutive laws including composites and laminates Comput. Mech. 15 1994 1-18
-
(1994)
Comput. Mech.
, vol.15
, pp. 1-18
-
-
Braun, M.1
Bischoff, M.2
Ramm, E.3
-
28
-
-
0027797481
-
Refined shear-deformation models for composite laminates with finite rotations
-
Y. Basar Y. Ding R. Schultz Refined shear-deformation models for composite laminates with finite rotations Int. J. Solids Struct. 30 1993 2611-2638
-
(1993)
Int. J. Solids Struct.
, vol.30
, pp. 2611-2638
-
-
Basar, Y.1
Ding, Y.2
Schultz, R.3
|