-
1
-
-
0017916002
-
Improvement of plate and shell finite element by mixed formulations
-
S.W. Lee and T.H.H. Pian, "Improvement of plate and shell finite element by mixed formulations", AIAA J. 16, pp. 29-34, 1978.
-
(1978)
AIAA J.
, vol.16
, pp. 29-34
-
-
Lee, S.W.1
Pian, T.H.H.2
-
2
-
-
0021946710
-
Study of nine-node mixed formulation finite element for thin plates and shells
-
S. W. Lee, S. C. Wong and J.J. Rhiu, "Study of nine-node mixed formulation finite element for thin plates and shells", Comput. Struct. 21, pp. 1325-1334, 1985.
-
(1985)
Comput. Struct.
, vol.21
, pp. 1325-1334
-
-
Lee, S.W.1
Wong, S.C.2
Rhiu, J.J.3
-
3
-
-
0022736020
-
0 shell element based on assumed natural-coordinate strains
-
0 shell element based on assumed natural-coordinate strains", J. Appl. Mech. 53, pp. 278-290, 1986.
-
(1986)
J. Appl. Mech.
, vol.53
, pp. 278-290
-
-
Park, K.C.1
Stanley, G.M.2
-
4
-
-
0022524082
-
A new nine node degenerated shell element with enhanced membrane and shear interpolation
-
H.C. Huang and E.H. Hinton, "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Methods Eng. 22, pp. 73-92, 1986.
-
(1986)
Int. J. Numer. Methods Eng.
, vol.22
, pp. 73-92
-
-
Huang, H.C.1
Hinton, E.H.2
-
5
-
-
0023306377
-
A new efficient mixed formulation for thin shell finite element models
-
J.J. Rhiu and S.W. Lee, "A new efficient mixed formulation for thin shell finite element models", Int. J. Numer. Methods Eng. 24, pp. 581-604, 1987.
-
(1987)
Int. J. Numer. Methods Eng.
, vol.24
, pp. 581-604
-
-
Rhiu, J.J.1
Lee, S.W.2
-
6
-
-
0023172876
-
A quadrilateral shell elements using a mixed formulation
-
A.F. Saleeb, T.Y. Chang and W. Graf, "A quadrilateral shell elements using a mixed formulation", Comput. Struct. 26, pp. 787-803, 1987.
-
(1987)
Comput. Struct.
, vol.26
, pp. 787-803
-
-
Saleeb, A.F.1
Chang, T.Y.2
Graf, W.3
-
7
-
-
0024717199
-
On the mixed formulation of a 9-node lagrange shell elements
-
T.Y. Chang, A.F. Saleeb and W. Graf, "On the mixed formulation of a 9-node lagrange shell elements", Comput. Methods Appl. Mech. Eng. 73, pp. 259-281, 1989.
-
(1989)
Comput. Methods Appl. Mech. Eng.
, vol.73
, pp. 259-281
-
-
Chang, T.Y.1
Saleeb, A.F.2
Graf, W.3
-
8
-
-
0024606664
-
Assumed strain stabilization procedure for the 9-node lagrange shell element
-
T. Belytschko and B.L. Wong, "Assumed strain stabilization procedure for the 9-node lagrange shell element", Int. J. Numer. Methods Eng. 28, pp. 385-414, 1989.
-
(1989)
Int. J. Numer. Methods Eng.
, vol.28
, pp. 385-414
-
-
Belytschko, T.1
Wong, B.L.2
-
9
-
-
0024069602
-
A nine node finite element for analysis of geometrically non-linear shells
-
J. J. Rhiu and S. W. Lee, "A nine node finite element for analysis of geometrically non-linear shells", Int. J. Numer. Methods Eng. 26, pp. 1945-1962, 1988.
-
(1988)
Int. J. Numer. Methods Eng.
, vol.26
, pp. 1945-1962
-
-
Rhiu, J.J.1
Lee, S.W.2
-
10
-
-
0026140357
-
A survey of finite element models for the analysis of moderately thick shells
-
W. Gilewski and M. Radwanska, "A survey of finite element models for the analysis of moderately thick shells", Finite Elements in Analysis and Design 9, pp. 1-21, 1991.
-
(1991)
Finite Elements in Analysis and Design
, vol.9
, pp. 1-21
-
-
Gilewski, W.1
Radwanska, M.2
-
11
-
-
0015672278
-
On the hybrid stress finite element model for incremental analysis of large deflection problems
-
S. Atluri, "On the hybrid stress finite element model for incremental analysis of large deflection problems", Int. J. Solids Struct. 9, pp. 1177-1191, 1973.
-
(1973)
Int. J. Solids Struct.
, vol.9
, pp. 1177-1191
-
-
Atluri, S.1
-
12
-
-
0042869333
-
Variational principles for incremental finite element methods
-
T.H.H. Pian, "Variational principles for incremental finite element methods", J. Franklin Institute 302, pp. 473-488, 1976.
-
(1976)
J. Franklin Institute
, vol.302
, pp. 473-488
-
-
Pian, T.H.H.1
-
13
-
-
0017454011
-
Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method
-
P.L. Boland and T.H.H. Pian, "Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method", Comput. Struct. 7, pp. 1-12, 1977.
-
(1977)
Comput. Struct.
, vol.7
, pp. 1-12
-
-
Boland, P.L.1
Pian, T.H.H.2
-
14
-
-
0029484165
-
An efficient assumed strain element model with six DOF per node for geometrically nonlinear shells
-
H.C. Park, C. Cho and S.W. Lee, "An efficient assumed strain element model with six DOF per node for geometrically nonlinear shells", Int. J. Numer. Methods Eng. 38, 4101-4122, 1995.
-
(1995)
Int. J. Numer. Methods Eng.
, vol.38
, pp. 4101-4122
-
-
Park, H.C.1
Cho, C.2
Lee, S.W.3
-
15
-
-
0042869332
-
Analysis of finitely deformed shells using low-order mixed models
-
W.B. Kratzig and E. Onate (eds.), Springer, Berlin
-
A.F. Saleeb, T.Y. Chang and S. Yingyeunyong, "Analysis of finitely deformed shells using low-order mixed models", in: W.B. Kratzig and E. Onate (eds.), Computational Mechanics of Nonlinear Response of Shells, Springer, Berlin pp. 195-216, 1990.
-
(1990)
Computational Mechanics of Nonlinear Response of Shells
, pp. 195-216
-
-
Saleeb, A.F.1
Chang, T.Y.2
Yingyeunyong, S.3
-
16
-
-
0042869331
-
-
Ph.D. dissertation, Department of Aerospace Engineering, University of Maryland, College Park, MD
-
H.C. Park, An Efficient Geometrically Nonlinear Assumed Strain Shell Element Model with Six Degrees of Freedom per Node, Ph.D. dissertation, Department of Aerospace Engineering, University of Maryland, College Park, MD, 1994.
-
(1994)
An Efficient Geometrically Nonlinear Assumed Strain Shell Element Model with Six Degrees of Freedom per Node
-
-
Park, H.C.1
-
17
-
-
0023565459
-
An assumed covariant strain based 9-node shell element
-
J. Jang and P.M. Pinsky, "An assumed covariant strain based 9-node shell element", Int. J. Numer. Methods Eng. 22, pp. 2389-2411, 1987.
-
(1987)
Int. J. Numer. Methods Eng.
, vol.22
, pp. 2389-2411
-
-
Jang, J.1
Pinsky, P.M.2
-
18
-
-
0026840209
-
An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation
-
C. Sansour and H. Bufler, "An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation", Int. J. Numer. Methods Eng. 34, pp. 73-115. 1992.
-
(1992)
Int. J. Numer. Methods Eng.
, vol.34
, pp. 73-115
-
-
Sansour, C.1
Bufler, H.2
-
19
-
-
0029253039
-
A local coordinate system for assumed strain shell element formulation
-
H.C. Park and S.W. Lee, "A local coordinate system for assumed strain shell element formulation", Comput. Mech. 15(5), pp. 473-484, 1995.
-
(1995)
Comput. Mech.
, vol.15
, Issue.5
, pp. 473-484
-
-
Park, H.C.1
Lee, S.W.2
|