메뉴 건너뛰기




Volumn 177, Issue 9, 2007, Pages 1963-1976

Evaluation and classification of otoneurological data with new data analysis methods based on machine learning

Author keywords

Classification; Neural networks; Otoneurology; Variable evaluation

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; DISEASES; LEARNING SYSTEMS; NEURAL NETWORKS; NEUROLOGY; SPECTRUM ANALYSIS;

EID: 33847257326     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2006.11.002     Document Type: Article
Times cited : (9)

References (26)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 (1997) 245-271
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 2
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural-network models
    • Castellano G., and Fanelli A.M. Variable selection using neural-network models. Neurocomputing 31 (2000) 1-13
    • (2000) Neurocomputing , vol.31 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 4
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • Féraud R., and Clérot F. A methodology to explain neural network classification. Neural Networks 17 (2002) 237-246
    • (2002) Neural Networks , vol.17 , pp. 237-246
    • Féraud, R.1    Clérot, F.2
  • 5
    • 84907105591 scopus 로고
    • Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks
    • Hart A., and Wyatt J. Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks. Medical Informatics 15 3 (1990) 229-236
    • (1990) Medical Informatics , vol.15 , Issue.3 , pp. 229-236
    • Hart, A.1    Wyatt, J.2
  • 6
    • 2442705696 scopus 로고    scopus 로고
    • Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • Hsu W.H. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Information Sciences 163 (2004) 103-122
    • (2004) Information Sciences , vol.163 , pp. 103-122
    • Hsu, W.H.1
  • 11
    • 0034284315 scopus 로고    scopus 로고
    • Input selection based on an ensemble
    • van de Laar P., and Heskes T. Input selection based on an ensemble. Neurocomputing 34 (2001) 227-238
    • (2001) Neurocomputing , vol.34 , pp. 227-238
    • van de Laar, P.1    Heskes, T.2
  • 13
    • 0001854616 scopus 로고    scopus 로고
    • Assessing relevance determination methods using DELVE
    • Bishop C.M. (Ed), Springer Verlag, Berlin
    • Neal R.M. Assessing relevance determination methods using DELVE. In: Bishop C.M. (Ed). Neural Networks and Machine Learning (1998), Springer Verlag, Berlin 97-129
    • (1998) Neural Networks and Machine Learning , pp. 97-129
    • Neal, R.M.1
  • 14
    • 0032126086 scopus 로고    scopus 로고
    • Treatment of missing data values in a neural network based decision support system for acute abdominal pain
    • Pesonen E., Eskelinen M., and Juhola M. Treatment of missing data values in a neural network based decision support system for acute abdominal pain. Artificial Intelligence in Medicine 13 (1998) 139-146
    • (1998) Artificial Intelligence in Medicine , vol.13 , pp. 139-146
    • Pesonen, E.1    Eskelinen, M.2    Juhola, M.3
  • 16
    • 1642538309 scopus 로고    scopus 로고
    • Many are called, but few are chosen, feature selection and error estimation in high dimensional spaces
    • Schulerud H., and Albregtsen F. Many are called, but few are chosen, feature selection and error estimation in high dimensional spaces. Computer Methods and Programs in Biomedicine 73 (2004) 91-99
    • (2004) Computer Methods and Programs in Biomedicine , vol.73 , pp. 91-99
    • Schulerud, H.1    Albregtsen, F.2
  • 17
    • 0242692524 scopus 로고    scopus 로고
    • Web page feature selection and classification using neural networks
    • Selamat A., and Omatu S. Web page feature selection and classification using neural networks. Information Sciences 158 (2004) 69-88
    • (2004) Information Sciences , vol.158 , pp. 69-88
    • Selamat, A.1    Omatu, S.2
  • 18
    • 0038792228 scopus 로고    scopus 로고
    • On postprocessing of neural network prediction of polyproline type II secondary structures: network spectrum, response analysis, and scattering
    • Siermala M., Juhola M., and Vihinen M. On postprocessing of neural network prediction of polyproline type II secondary structures: network spectrum, response analysis, and scattering. Neural Computing & Applications 11 (2003) 238-243
    • (2003) Neural Computing & Applications , vol.11 , pp. 238-243
    • Siermala, M.1    Juhola, M.2    Vihinen, M.3
  • 19
    • 33745977407 scopus 로고    scopus 로고
    • Combining uncertainty and imprecision in models of medical diagnosis
    • Straszecka E. Combining uncertainty and imprecision in models of medical diagnosis. Information Sciences 176 (2006) 3026-3059
    • (2006) Information Sciences , vol.176 , pp. 3026-3059
    • Straszecka, E.1
  • 22
    • 0035889492 scopus 로고    scopus 로고
    • Variable selection and Bayesian model averaging in case-control studies
    • Viallefont V., Raftery A.E., and Richardson S. Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine 20 (2001) 3215-3230
    • (2001) Statistics in Medicine , vol.20 , pp. 3215-3230
    • Viallefont, V.1    Raftery, A.E.2    Richardson, S.3
  • 24
    • 0004204162 scopus 로고    scopus 로고
    • Morgan Kaufman Publishers, San Francisco
    • Witten I.H., and Frank E. Data Mining (2000), Morgan Kaufman Publishers, San Francisco
    • (2000) Data Mining
    • Witten, I.H.1    Frank, E.2
  • 25
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach
    • Wolf L., and Shashua A. Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach. Journal of Machine Learning Research 6 (2005) 1855-1887
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.