메뉴 건너뛰기




Volumn 18, Issue 1, 2006, Pages 37-46

Input variable selection: Mutual information and Linear Mixing Measures

Author keywords

Data preprocessing; Independent component analysis; Input variable selection; Modeling; Mutual information estimation

Indexed keywords

DATA PREPROCESSING; INPUT VARIABLE SELECTION; MODELING; MUTUAL INFORMATION ESTIMATION;

EID: 31344436439     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2006.11     Document Type: Article
Times cited : (36)

References (22)
  • 1
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G.H. John, "Wrappers for Feature Subset Selection," Artificial Intelligence, vol. 97, nos. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 2
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 3
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • journal version in AIJ
    • G.H. John, R. Kohavi, and K. Pfleger, "Irrelevant Features and the Subset Selection Problem," Proc. Int'l Conf. Machine Learning, pp. 121-129, 1994, journal version in AIJ, available at http://citeseer.nj.nec.com/13663. html.
    • (1994) Proc. Int'l Conf. Machine Learning , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 4
    • 0035329583 scopus 로고    scopus 로고
    • Selecting inputs for modeling using normalized higher order statistics and independent component analysis
    • May
    • A.D. Back and T.P. Trappenberg, "Selecting Inputs for Modeling Using Normalized Higher Order Statistics and Independent Component Analysis," IEEE Trans. Neural Networks, vol. 12, no. 3, pp. 612-617, May 2001.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.3 , pp. 612-617
    • Back, A.D.1    Trappenberg, T.P.2
  • 5
    • 0000686085 scopus 로고
    • Learning hard concepts through constructive induction: Framework and rationale
    • L.A. Rendell and R. Seshu, "Learning Hard Concepts through Constructive Induction: Framework and Rationale," Computational Intelligence, vol. 6, no. 4, pp. 247-270, 1990.
    • (1990) Computational Intelligence , vol.6 , Issue.4 , pp. 247-270
    • Rendell, L.A.1    Seshu, R.2
  • 6
    • 0035500276 scopus 로고    scopus 로고
    • Understanding the crucial role of attribute interaction in data mining
    • Nov.
    • A.A. Freitas, "Understanding the Crucial Role of Attribute Interaction in Data Mining," Artificial Intelligence Rev., vol. 16, no. 3, pp. 177-199, Nov. 2001.
    • (2001) Artificial Intelligence Rev. , vol.16 , Issue.3 , pp. 177-199
    • Freitas, A.A.1
  • 9
    • 84898987386 scopus 로고    scopus 로고
    • Data visualization and feature selection: New algorithms for nongaussian data
    • T.K. Leen, S.A. Solla, and K.-R. Muller, eds., MIT Press
    • H.H. Yang and J.E. Moody, "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data," Advances in Neural Information Processing Systems, T.K. Leen, S.A. Solla, and K.-R. Muller, eds., vol. 12, MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Yang, H.H.1    Moody, J.E.2
  • 10
    • 0032641874 scopus 로고    scopus 로고
    • Estimation of the information by an adaptive partitioning of the observation space
    • May
    • G.A. Darbellay and I. Vajda, "Estimation of the Information by an Adaptive Partitioning of the Observation Space," IEEE Trans. Information Theory, vol. 45, no. 4, pp. 1315-1321, May 1999.
    • (1999) IEEE Trans. Information Theory , vol.45 , Issue.4 , pp. 1315-1321
    • Darbellay, G.A.1    Vajda, I.2
  • 12
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, eds., The MIT Press
    • S. Amari, A. Cichocki, and H.H. Yang, "A New Learning Algorithm for Blind Signal Separation," Advances in Neural Information Processing Systems, D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, eds., vol. 8, pp. 757-763, The MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 17
    • 32344446687 scopus 로고
    • Understanding the metropolis-hastings algorithm
    • Nov.
    • S. Chib and E. Greenberg, "Understanding the Metropolis-Hastings Algorithm," The Am. Statistician, vol. 49, no. 4, pp. 327-335, Nov. 1995.
    • (1995) The Am. Statistician , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 22
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • T.W.S. Chow and D. Huang, "Estimating Optimal Feature Subsets Using Efficient Estimation of High-Dimensional Mutual Information," IEEE Trans. Neural Networks, vol. 16, no. 1, pp. 213-224, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.W.S.1    Huang, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.