메뉴 건너뛰기




Volumn 176, Issue 14, 2006, Pages 2042-2065

A scalable supervised algorithm for dimensionality reduction on streaming data

Author keywords

Dimensionality reduction; Linear discriminant analysis (LDA); Maximum margin criterion (MMC); Principal component analysis (PCA); Streaming data

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA REDUCTION; LINEAR SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; PROBLEM SOLVING;

EID: 33646150192     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2005.11.005     Document Type: Article
Times cited : (25)

References (28)
  • 1
    • 0043111365 scopus 로고    scopus 로고
    • M. Artae, M. Jogan, A. Leonardis, Incremental PCA for on-line visual learning and recognition, in: Proceeding of the 16th International Conference on Pattern Recognition, Quebec City, QC, Canada, 2002.
  • 2
    • 0036042175 scopus 로고    scopus 로고
    • B. Babcock, Models and issues in data stream systems, in: Proceeding of the ACM PODS, 2002.
  • 4
    • 33646148295 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI Repository of machine learning databases Irvine, University of California, Department of Information and Computer Science, California, 1998.
  • 5
    • 33646157785 scopus 로고    scopus 로고
    • A. Broder, M. Mitzenmacher, Network applications of bloom filters: a survey, in: Proceeding of the Allerton Conference, 2002.
  • 6
    • 33646127850 scopus 로고    scopus 로고
    • M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in: Proceeding of the ICALP, 2002.
  • 7
    • 0005308437 scopus 로고    scopus 로고
    • Surfing wavelets on streams: one pass summaries for approximate aggregate queries
    • Gilbert A., et al. Surfing wavelets on streams: one pass summaries for approximate aggregate queries. VLDB Journal (2001) 79-88
    • (2001) VLDB Journal , pp. 79-88
    • Gilbert, A.1
  • 8
    • 33646158734 scopus 로고    scopus 로고
    • A. Globerson, G. Chechik, N. Tishby, Sufficient dimensionality reduction with irrelevance statistics, in: Proceeding of the 19th Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico, 2003.
  • 10
    • 0034504507 scopus 로고    scopus 로고
    • Stable distributions, pseudorandom generators, embeddings and data stream computation
    • Indyk P. Stable distributions, pseudorandom generators, embeddings and data stream computation. IEEE FOCS (2000) 189-197
    • (2000) IEEE FOCS , pp. 189-197
    • Indyk, P.1
  • 11
    • 0034832347 scopus 로고    scopus 로고
    • S. Khanna, M. Greenwald, Space-efficient online computation of quantile summaries, in: Proceeding of the ACM SIGMOD, 2001.
  • 13
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: a new benchmark collection for text categorization research
    • Lewis D., et al. RCV1: a new benchmark collection for text categorization research. Journal of Machine Learning Research 5 (2004) 361-397
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.1
  • 15
    • 33646140394 scopus 로고    scopus 로고
    • G. Manku, R. Motwani, Approximate frequency counts over data streams, in: Proceeding of the VLDB, 2002.
  • 17
    • 0003343174 scopus 로고    scopus 로고
    • N. Mishra, D. Oblinger, L. Pitt, Sublinear time approximate clustering, in: Proceeding of the ACM-SIAM SODA, 2001.
  • 19
    • 0036203413 scopus 로고    scopus 로고
    • L. OCallaghan et al., Streaming-data algorithms for high-quality clustering, in: Proceeding of the International Conference on Data Engineering (ICDE), 2002.
  • 20
    • 84944323337 scopus 로고    scopus 로고
    • P. Gibbons, Distinct sampling for highly-accurate answer to distinct values queries and event reports in VLDB, 2001.
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods: Support Vector Learning (1999), MIT Press, Cambridge, MA 185-208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 22
    • 0032089874 scopus 로고    scopus 로고
    • Random sampling for histogram construction: how much is enough?
    • Motwani R., Chaudhuri S., and Narasayya V. Random sampling for histogram construction: how much is enough?. SIGMOD (1998) 436-447
    • (1998) SIGMOD , pp. 436-447
    • Motwani, R.1    Chaudhuri, S.2    Narasayya, V.3
  • 24
    • 77952415079 scopus 로고    scopus 로고
    • H. Wong, W. Fan, P. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceeding of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003.
  • 25
    • 19944428028 scopus 로고    scopus 로고
    • J. Yan, B.Y. Zhang, S.C. Yan, Z. Chen, W.G. Fan, Q. Yang, W.Y. Ma, Q.S. Cheng, IMMC: Incremental maximum marginal criterion, in: Proceeding of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 2004.
  • 26
    • 33646163060 scopus 로고    scopus 로고
    • Y. Yang, J.O. Pedersen, A comparative study on feature selection in text categorization, in: Proceeding of the 14th International Conference on Machine Learning, 1997.
  • 27
    • 1942420344 scopus 로고    scopus 로고
    • J. Zhang et al., Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization, in: Proceeding of the 20th International Conference on Machine Learning, Washington, DC, 2003.
  • 28
    • 33646129262 scopus 로고    scopus 로고
    • Y. Zhang, J. Weng, Convergence analysis of complementary candid incremental principal component Analysis, Technical Report, MSU-CSE-01-23, Computer Science and Engineering Department of Michigan State University, August, 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.