메뉴 건너뛰기




Volumn WS-06-06, Issue , 2006, Pages 1-5

Machine learning as an experimental science

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SCIENCE; DECISION TABLES; STATISTICAL TESTS;

EID: 33845993969     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (39)
  • 1
    • 33750939148 scopus 로고    scopus 로고
    • The UCI KDD archive of large data sets for data mining research and experimentation
    • Bay, S. D.; Kibler, D.; Pazzani, M. J.; and Smyth, P. 2000. The UCI KDD archive of large data sets for data mining research and experimentation. SIGKDD Explorations. 2(2): 14.
    • (2000) SIGKDD Explorations , vol.2 , Issue.2 , pp. 14
    • Bay, S.D.1    Kibler, D.2    Pazzani, M.J.3    Smyth, P.4
  • 3
    • 0031829312 scopus 로고    scopus 로고
    • Precis of statistical significance: Rationale, validity, and utility
    • Chow, S. L. 1998. Precis of statistical significance: Rationale, validity, and utility. Behavioral And Brain Sciences 21:169-239.
    • (1998) Behavioral And Brain Sciences , vol.21 , pp. 169-239
    • Chow, S.L.1
  • 4
    • 0039802908 scopus 로고
    • The earth is round (p ¿ .05)
    • Cohen, J. 1994. The earth is round (p ¿ .05). American Psychologist 49:997-1003.
    • (1994) American Psychologist , vol.49 , pp. 997-1003
    • Cohen, J.1
  • 6
    • 2342622786 scopus 로고    scopus 로고
    • Leave-one-out error, stability, and generalization of voting combination of classifiers
    • Evgeniou, T.; Pontil, M.; and Elisseeff, A. 2004. Leave-one-out error, stability, and generalization of voting combination of classifiers. Machine Learning 55(1):71-97.
    • (2004) Machine Learning , vol.55 , Issue.1 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 7
    • 33845997377 scopus 로고    scopus 로고
    • Ferri, C, Flach, P, Hernndez-Orallo, J, and Lachiche, N, eds
    • Ferri, C.; Flach, P.; Hernndez-Orallo, J.; and Lachiche, N., eds. 2004. ECAI 2004 Workshop on ROC Analysis in AI.
    • (2004) ECAI 2004 Workshop on ROC Analysis in AI
  • 10
    • 0023049334 scopus 로고
    • Confidence intervals rather than p values: Estimation rather than hypothesis testing
    • Gardner, M., and Altman, D. G. 1986. Confidence intervals rather than p values: estimation rather than hypothesis testing. British Medical Journal 292:746-750.
    • (1986) British Medical Journal , vol.292 , pp. 746-750
    • Gardner, M.1    Altman, D.G.2
  • 11
    • 0033454314 scopus 로고    scopus 로고
    • The insignificance of null hypothesis significance testing
    • Gill, J., and Meier, K. 1999. The insignificance of null hypothesis significance testing. Political Research Quarterly 647-674.
    • (1999) Political Research Quarterly , pp. 647-674
    • Gill, J.1    Meier, K.2
  • 13
    • 84993697599 scopus 로고
    • The notion of the hypothetical universe
    • Chicago: Aldine. chapter 4
    • Hagood, M. J. 1941. The notion of the hypothetical universe. In The Significance Test Controversy: A Reader. Chicago: Aldine. chapter 4, 65-78.
    • (1941) The Significance Test Controversy: A Reader , pp. 65-78
    • Hagood, M.J.1
  • 14
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. 1993. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11(1):63-91.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 15
    • 0033907286 scopus 로고    scopus 로고
    • Multiple comparisons in induction algorithms
    • Jensen, D. D., and Cohen, P. R. 2000. Multiple comparisons in induction algorithms. Machine Learning 38(3):309-338.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 309-338
    • Jensen, D.D.1    Cohen, P.R.2
  • 16
    • 0032808670 scopus 로고    scopus 로고
    • The insignificance of statistical significance testing
    • Johnson, D. H. 1999. The insignificance of statistical significance testing. Journal of Wildlife Management 63(3):763-772.
    • (1999) Journal of Wildlife Management , vol.63 , Issue.3 , pp. 763-772
    • Johnson, D.H.1
  • 19
    • 84974776937 scopus 로고
    • Guest editor's introduction: The comprehensibility manifesto
    • Kodratoff, Y. 1994. Guest editor's introduction: The comprehensibility manifesto. AI Communications 7(2).
    • (1994) AI Communications , vol.7 , Issue.2
    • Kodratoff, Y.1
  • 20
    • 1642452775 scopus 로고
    • Machine learning as an experimental science
    • Langley, P. 1988. Machine learning as an experimental science. Machine Learning 3:5-8.
    • (1988) Machine Learning , vol.3 , pp. 5-8
    • Langley, P.1
  • 23
    • 0002212028 scopus 로고    scopus 로고
    • The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
    • Mahwah, NJ: Erlbaum, chapter 14
    • Meehl, P. E. 1997. The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In What If There Were No Significance Tests? Mahwah, NJ: Erlbaum, chapter 14, 393-25.
    • (1997) What If There Were No Significance Tests , pp. 393-325
    • Meehl, P.E.1
  • 24
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski, R. S. 1983. A theory and methodology of inductive learning. Artificial Intelligence 20:111-161.
    • (1983) Artificial Intelligence , vol.20 , pp. 111-161
    • Michalski, R.S.1
  • 27
    • 0002711488 scopus 로고    scopus 로고
    • The data analysis dilemma: Ban or abandon, a review of null hypothesis significance testing
    • Nix, T. W., and Barnette, J. J. 1998. The data analysis dilemma: Ban or abandon, a review of null hypothesis significance testing. Research In The Schools 5(2):3-14.
    • (1998) Research In The Schools , vol.5 , Issue.2 , pp. 3-14
    • Nix, T.W.1    Barnette, J.J.2
  • 30
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., and Fawcett, T. 2001. Robust classification for imprecise environments. Machine Learning 42:203-231.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 33
    • 0032001170 scopus 로고    scopus 로고
    • Learning in the "real world
    • Saitta, L., and Neri, F. 1998. Learning in the "real world". Machine Learning 30(2-3):133-163.
    • (1998) Machine Learning , pp. 133-163
    • Saitta, L.1    Neri, F.2
  • 34
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. L. 1997. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1:317-327.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 35
    • 0000724985 scopus 로고    scopus 로고
    • Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers
    • Schmidt, F. L. 1996. Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers. Psychological Methods 1(2):115-129.
    • (1996) Psychological Methods , vol.1 , Issue.2 , pp. 115-129
    • Schmidt, F.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.