-
1
-
-
0002483594
-
Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
-
Lučić, B.; Trinajstić, N. Multivariate Regression Outperforms Several Robust Architectures of Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 1999, 39, 121-132.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 121-132
-
-
Lučić, B.1
Trinajstić, N.2
-
2
-
-
0040888006
-
A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors
-
Lučić, B.; Trinajstić, N.; Sild, S.; Karelson, M.; Katritzky, A. R. A New Efficient Approach for Variable Selection Based on Multiregression: Prediction of Gas Chromatographic Retention Times and Response Factors. J. Chem. Inf. Comput. Sci. 1999, 39, 610-621.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 610-621
-
-
Lučić, B.1
Trinajstić, N.2
Sild, S.3
Karelson, M.4
Katritzky, A.R.5
-
3
-
-
0000104192
-
Nonlinear multivariate regression outperforms several concisely designed neural networks in QSAR modeling
-
Lučić, B.; Amić, D.; Trinajstić, N. Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 2000, 40, 403-413.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 403-413
-
-
Lučić, B.1
Amić, D.2
Trinajstić, N.3
-
4
-
-
0034145875
-
A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute toxicities
-
Basak, S. C.; Gute, B. D.; Lučić, B.; Nikolić, S.; Trinajstić, N. A Comparative QSAR Study of Benzamidines Complement-Inhibitory Activity and Benzene Derivatives Acute Toxicities. Comput. Chem. 2000, 24, 181-191.
-
(2000)
Comput. Chem.
, vol.24
, pp. 181-191
-
-
Basak, S.C.1
Gute, B.D.2
Lučić, B.3
Nikolić, S.4
Trinajstić, N.5
-
5
-
-
0001447184
-
Neural network studies. 1. Comparison of overfilling and overtraining
-
Tetko, I. V.; Alessandro Villa, A. E. P.; Livingston, D. J. Neural Network Studies. 1. Comparison of Overfilling and Overtraining. J. Chem. Inf. Comput. Sci. 1995, 35, 826-833.
-
(1995)
J. Chem. Inf. Comput. Sci.
, vol.35
, pp. 826-833
-
-
Tetko, I.V.1
Alessandro Villa, A.E.P.2
Livingston, D.J.3
-
6
-
-
0030188379
-
Neural network studies. 2. Variable selection
-
Tetko, I. V.; Alessandro Villa, A. E. P.; Livingston, D. J. Neural Network Studies. 2. Variable Selection. J. Chem. Inf. Comput. Sci. 1996, 36, 794-803.
-
(1996)
J. Chem. Inf. Comput. Sci.
, vol.36
, pp. 794-803
-
-
Tetko, I.V.1
Alessandro Villa, A.E.P.2
Livingston, D.J.3
-
7
-
-
11344290168
-
Neural network studies. 3. Variable selection in the cascade-correlation learning architecture
-
Kovalishyn, V. V.; Tetko, I. V.; Alessandro Villa, A. E. P.; Livingston, D. J. Neural Network Studies. 3. Variable Selection in the Cascade-Correlation Learning Architecture. J. Chem. Inf. Comput. Sci. 1998, 38, 651-659.
-
(1998)
J. Chem. Inf. Comput. Sci.
, vol.38
, pp. 651-659
-
-
Kovalishyn, V.V.1
Tetko, I.V.2
Alessandro Villa, A.E.P.3
Livingston, D.J.4
-
8
-
-
33747015265
-
Ockham's razor and chemistry
-
Hoffmann, R.; Minkin, V. I.; Carpenter, B. K. Ockham's Razor and Chemistry. Bull. Soc. Chim. Fr. 1996, 133, 117-130.
-
(1996)
Bull. Soc. Chim. Fr.
, vol.133
, pp. 117-130
-
-
Hoffmann, R.1
Minkin, V.I.2
Carpenter, B.K.3
-
9
-
-
0041700288
-
-
Cerius2; Accelrys: 9685 Scranton Road, San Diego, CA, 92191
-
Cerius2; Accelrys: 9685 Scranton Road, San Diego, CA, 92191.
-
-
-
-
10
-
-
0028467707
-
Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships
-
Rogers, D.; Hopfinger, A. J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 1994, 34, 854-866.
-
(1994)
J. Chem. Inf. Comput. Sci.
, vol.34
, pp. 854-866
-
-
Rogers, D.1
Hopfinger, A.J.2
-
11
-
-
85010165175
-
Antileukemic agents. II. New 2,5-bis(l-aziridinyl)-p-benzoquinone derivatives
-
Nakao, H.; Arakawa, M.; Nakamura, T.; Fukushima, M. Antileukemic Agents. II. New 2,5-bis(l-aziridinyl)-p-benzoquinone Derivatives. Chem. Pharm. Bull. 1972, 20, 1968-1979.
-
(1972)
Chem. Pharm. Bull.
, vol.20
, pp. 1968-1979
-
-
Nakao, H.1
Arakawa, M.2
Nakamura, T.3
Fukushima, M.4
-
12
-
-
0027076492
-
Comparison of functional-link net and generalised delta rule net in quantitative structure-activity relationship studies
-
Liu, Q.; Hirono, S.; Moriguchi, I. Comparison of Functional-Link Net and Generalised Delta Rule Net in Quantitative Structure-Activity Relationship Studies. Chem. Pharm. Bull. 1992, 40, 2962-2969.
-
(1992)
Chem. Pharm. Bull.
, vol.40
, pp. 2962-2969
-
-
Liu, Q.1
Hirono, S.2
Moriguchi, I.3
-
13
-
-
0025029558
-
Neural networks applied to quantitative structure-activity relationship analysis
-
Aoyama, T.; Suzuki, Y.; Ichikawa, H. Neural Networks Applied to Quantitative Structure-Activity Relationship Analysis. J. Med. Chem. 1990, 33, 2583-2590.
-
(1990)
J. Med. Chem.
, vol.33
, pp. 2583-2590
-
-
Aoyama, T.1
Suzuki, Y.2
Ichikawa, H.3
-
14
-
-
0028493138
-
Quantitative structure-activity relationships by neural networks and inductive logic programming. 1. The inhibition of dihydrofolate reductase by pyrimidines
-
Hirst, J. D.; King, R. D.; Sternberg, M. J. E. Quantitative Structure-Activity Relationships by Neural Networks and Inductive Logic Programming. 1. The Inhibition of Dihydrofolate Reductase by Pyrimidines. J. Comput.-Aided Mol. Des. 1994, 8, 405-420.
-
(1994)
J. Comput.-Aided Mol. Des.
, vol.8
, pp. 405-420
-
-
Hirst, J.D.1
King, R.D.2
Sternberg, M.J.E.3
-
15
-
-
0025021103
-
Structure-activity relationships of antifilarial antimycin analogues: A multivariate pattern recognition study
-
Selwood, D. L.; Livingstone, D. J.; Comley, J. C. W.; O'Dowd, A. B.; Hudson, A. T.; Jackson, P.; Jandu, K. S.; Rose, V. S.; Stables, J. N. Structure-Activity Relationships of Antifilarial Antimycin Analogues: A Multivariate Pattern Recognition Study, J. Med. Chem. 1990, 33, 136-142.
-
(1990)
J. Med. Chem.
, vol.33
, pp. 136-142
-
-
Selwood, D.L.1
Livingstone, D.J.2
Comley, J.C.W.3
O'Dowd, A.B.4
Hudson, A.T.5
Jackson, P.6
Jandu, K.S.7
Rose, V.S.8
Stables, J.N.9
-
16
-
-
0002924226
-
Genetic partial least squares in QSAR
-
Devillers, J., Ed.; Academic Press: London
-
Dunn, W.; Rogers, D. Genetic Partial Least Squares in QSAR. In Genetic Algorithms in Molecular Modeling; Devillers, J., Ed.; Academic Press: London, 1996; pp 109-130.
-
(1996)
Genetic Algorithms in Molecular Modeling
, pp. 109-130
-
-
Dunn, W.1
Rogers, D.2
-
17
-
-
0000626789
-
Evolutionary variable selection in regression and PLS analyses
-
Kubinyi, H. Evolutionary Variable Selection in Regression and PLS Analyses. J. Chemometrics 1996, 10, 119-133.
-
(1996)
J. Chemometrics
, vol.10
, pp. 119-133
-
-
Kubinyi, H.1
-
18
-
-
0029970338
-
Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural network
-
So, S.-S.; Karplus, M. Evolutionary Optimization in Quantitative Structure-Activity Relationship: An Application of Genetic Neural Network. J. Med. Chem. 1996, 39, 1521-1530.
-
(1996)
J. Med. Chem.
, vol.39
, pp. 1521-1530
-
-
So, S.-S.1
Karplus, M.2
-
19
-
-
0034265479
-
Unsupervised forward selection: A method for eliminating redundant variables
-
Whitley, D. C.; Ford, M. G.; Living stone, D. J. Unsupervised Forward Selection: A Method for Eliminating Redundant Variables. J. Chem. Inf. Comput. Sci. 2000, 40, 1160-1168.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 1160-1168
-
-
Whitley, D.C.1
Ford, M.G.2
Living Stone, D.J.3
-
20
-
-
0000481568
-
Development and validation of a novel variable selection techniques with application to multidimensional quantitative structure-activity relationships studies
-
Waller, C. L.; Bradley, M. P. Development and Validation of a Novel Variable Selection Techniques with Application to Multidimensional Quantitative Structure-Activity Relationships Studies. J. Chem. Inf. Comput. Sci. 2000, 39, 345-355.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 345-355
-
-
Waller, C.L.1
Bradley, M.P.2
-
21
-
-
0042200803
-
-
note
-
For example, in ref 6 the authors pointed on page 795 (section "ANN implementation") that single ANN (Artificial Neural Network) with 10 neurons in one hidden layer were used in the computation. In addition, bias neurons were used both on the input and on the hidden layer. It means that single ANN contained up to 77 weights for only five inputs. Because at least 100 ANNs were calculated and used in each ensemble a huge number of more than 7000 weights (i.e. optimized parameters) were used in each NNE model. It is important to point out that, for some data sets, even 500 ANNs were used in the ensemble.
-
-
-
-
22
-
-
3242758277
-
Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods
-
Lučić, B.; Bašic, I.; Nadramija, D.; Miličević, A.; Trinajstić, N.; Suzuki, T.; Petrukhin, R.; Karelson, M.; Katritzky, A. R. Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods. Arkivoc 2002, (IV), 45-59 (http;// www.arkat-usa.org/ark/journal/2002/Sunko/DS-381D/DS-38 1D.pdf).
-
(2002)
Arkivoc
, Issue.4
, pp. 45-59
-
-
Lučić, B.1
Bašic, I.2
Nadramija, D.3
Miličević, A.4
Trinajstić, N.5
Suzuki, T.6
Petrukhin, R.7
Karelson, M.8
Katritzky, A.R.9
|