메뉴 건너뛰기




Volumn 43, Issue 4, 2003, Pages 1094-1102

Toward generating simpler QSAR models: Nonlinear multivariate regression versus several neural network ensembles and some related methods

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; DERIVATIVES; GENETIC ALGORITHMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; REGRESSION ANALYSIS;

EID: 18344410789     PISSN: 00952338     EISSN: None     Source Type: Journal    
DOI: 10.1021/ci025636j     Document Type: Article
Times cited : (29)

References (22)
  • 1
    • 0002483594 scopus 로고    scopus 로고
    • Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
    • Lučić, B.; Trinajstić, N. Multivariate Regression Outperforms Several Robust Architectures of Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 1999, 39, 121-132.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 121-132
    • Lučić, B.1    Trinajstić, N.2
  • 2
    • 0040888006 scopus 로고    scopus 로고
    • A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors
    • Lučić, B.; Trinajstić, N.; Sild, S.; Karelson, M.; Katritzky, A. R. A New Efficient Approach for Variable Selection Based on Multiregression: Prediction of Gas Chromatographic Retention Times and Response Factors. J. Chem. Inf. Comput. Sci. 1999, 39, 610-621.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 610-621
    • Lučić, B.1    Trinajstić, N.2    Sild, S.3    Karelson, M.4    Katritzky, A.R.5
  • 3
    • 0000104192 scopus 로고    scopus 로고
    • Nonlinear multivariate regression outperforms several concisely designed neural networks in QSAR modeling
    • Lučić, B.; Amić, D.; Trinajstić, N. Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 2000, 40, 403-413.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 403-413
    • Lučić, B.1    Amić, D.2    Trinajstić, N.3
  • 4
    • 0034145875 scopus 로고    scopus 로고
    • A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute toxicities
    • Basak, S. C.; Gute, B. D.; Lučić, B.; Nikolić, S.; Trinajstić, N. A Comparative QSAR Study of Benzamidines Complement-Inhibitory Activity and Benzene Derivatives Acute Toxicities. Comput. Chem. 2000, 24, 181-191.
    • (2000) Comput. Chem. , vol.24 , pp. 181-191
    • Basak, S.C.1    Gute, B.D.2    Lučić, B.3    Nikolić, S.4    Trinajstić, N.5
  • 9
    • 0041700288 scopus 로고    scopus 로고
    • Cerius2; Accelrys: 9685 Scranton Road, San Diego, CA, 92191
    • Cerius2; Accelrys: 9685 Scranton Road, San Diego, CA, 92191.
  • 10
    • 0028467707 scopus 로고
    • Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships
    • Rogers, D.; Hopfinger, A. J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 1994, 34, 854-866.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 11
    • 85010165175 scopus 로고
    • Antileukemic agents. II. New 2,5-bis(l-aziridinyl)-p-benzoquinone derivatives
    • Nakao, H.; Arakawa, M.; Nakamura, T.; Fukushima, M. Antileukemic Agents. II. New 2,5-bis(l-aziridinyl)-p-benzoquinone Derivatives. Chem. Pharm. Bull. 1972, 20, 1968-1979.
    • (1972) Chem. Pharm. Bull. , vol.20 , pp. 1968-1979
    • Nakao, H.1    Arakawa, M.2    Nakamura, T.3    Fukushima, M.4
  • 12
    • 0027076492 scopus 로고
    • Comparison of functional-link net and generalised delta rule net in quantitative structure-activity relationship studies
    • Liu, Q.; Hirono, S.; Moriguchi, I. Comparison of Functional-Link Net and Generalised Delta Rule Net in Quantitative Structure-Activity Relationship Studies. Chem. Pharm. Bull. 1992, 40, 2962-2969.
    • (1992) Chem. Pharm. Bull. , vol.40 , pp. 2962-2969
    • Liu, Q.1    Hirono, S.2    Moriguchi, I.3
  • 13
    • 0025029558 scopus 로고
    • Neural networks applied to quantitative structure-activity relationship analysis
    • Aoyama, T.; Suzuki, Y.; Ichikawa, H. Neural Networks Applied to Quantitative Structure-Activity Relationship Analysis. J. Med. Chem. 1990, 33, 2583-2590.
    • (1990) J. Med. Chem. , vol.33 , pp. 2583-2590
    • Aoyama, T.1    Suzuki, Y.2    Ichikawa, H.3
  • 14
    • 0028493138 scopus 로고
    • Quantitative structure-activity relationships by neural networks and inductive logic programming. 1. The inhibition of dihydrofolate reductase by pyrimidines
    • Hirst, J. D.; King, R. D.; Sternberg, M. J. E. Quantitative Structure-Activity Relationships by Neural Networks and Inductive Logic Programming. 1. The Inhibition of Dihydrofolate Reductase by Pyrimidines. J. Comput.-Aided Mol. Des. 1994, 8, 405-420.
    • (1994) J. Comput.-Aided Mol. Des. , vol.8 , pp. 405-420
    • Hirst, J.D.1    King, R.D.2    Sternberg, M.J.E.3
  • 16
    • 0002924226 scopus 로고    scopus 로고
    • Genetic partial least squares in QSAR
    • Devillers, J., Ed.; Academic Press: London
    • Dunn, W.; Rogers, D. Genetic Partial Least Squares in QSAR. In Genetic Algorithms in Molecular Modeling; Devillers, J., Ed.; Academic Press: London, 1996; pp 109-130.
    • (1996) Genetic Algorithms in Molecular Modeling , pp. 109-130
    • Dunn, W.1    Rogers, D.2
  • 17
    • 0000626789 scopus 로고    scopus 로고
    • Evolutionary variable selection in regression and PLS analyses
    • Kubinyi, H. Evolutionary Variable Selection in Regression and PLS Analyses. J. Chemometrics 1996, 10, 119-133.
    • (1996) J. Chemometrics , vol.10 , pp. 119-133
    • Kubinyi, H.1
  • 18
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural network
    • So, S.-S.; Karplus, M. Evolutionary Optimization in Quantitative Structure-Activity Relationship: An Application of Genetic Neural Network. J. Med. Chem. 1996, 39, 1521-1530.
    • (1996) J. Med. Chem. , vol.39 , pp. 1521-1530
    • So, S.-S.1    Karplus, M.2
  • 19
    • 0034265479 scopus 로고    scopus 로고
    • Unsupervised forward selection: A method for eliminating redundant variables
    • Whitley, D. C.; Ford, M. G.; Living stone, D. J. Unsupervised Forward Selection: A Method for Eliminating Redundant Variables. J. Chem. Inf. Comput. Sci. 2000, 40, 1160-1168.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 1160-1168
    • Whitley, D.C.1    Ford, M.G.2    Living Stone, D.J.3
  • 20
    • 0000481568 scopus 로고    scopus 로고
    • Development and validation of a novel variable selection techniques with application to multidimensional quantitative structure-activity relationships studies
    • Waller, C. L.; Bradley, M. P. Development and Validation of a Novel Variable Selection Techniques with Application to Multidimensional Quantitative Structure-Activity Relationships Studies. J. Chem. Inf. Comput. Sci. 2000, 39, 345-355.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 345-355
    • Waller, C.L.1    Bradley, M.P.2
  • 21
    • 0042200803 scopus 로고    scopus 로고
    • note
    • For example, in ref 6 the authors pointed on page 795 (section "ANN implementation") that single ANN (Artificial Neural Network) with 10 neurons in one hidden layer were used in the computation. In addition, bias neurons were used both on the input and on the hidden layer. It means that single ANN contained up to 77 weights for only five inputs. Because at least 100 ANNs were calculated and used in each ensemble a huge number of more than 7000 weights (i.e. optimized parameters) were used in each NNE model. It is important to point out that, for some data sets, even 500 ANNs were used in the ensemble.
  • 22
    • 3242758277 scopus 로고    scopus 로고
    • Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods
    • Lučić, B.; Bašic, I.; Nadramija, D.; Miličević, A.; Trinajstić, N.; Suzuki, T.; Petrukhin, R.; Karelson, M.; Katritzky, A. R. Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods. Arkivoc 2002, (IV), 45-59 (http;// www.arkat-usa.org/ark/journal/2002/Sunko/DS-381D/DS-38 1D.pdf).
    • (2002) Arkivoc , Issue.4 , pp. 45-59
    • Lučić, B.1    Bašic, I.2    Nadramija, D.3    Miličević, A.4    Trinajstić, N.5    Suzuki, T.6    Petrukhin, R.7    Karelson, M.8    Katritzky, A.R.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.