-
1
-
-
0025868103
-
Demonstration that CFTR is a chloride channel by alteration of its anion selectivity
-
Anderson, M.P., R.J. Gregory, S. Thompson, D.W. Souza, S. Paul, R.C. Mulligan, A.E. Smith, and M.J. Welsh. 1991. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 253:202-205.
-
(1991)
Science
, vol.253
, pp. 202-205
-
-
Anderson, M.P.1
Gregory, R.J.2
Thompson, S.3
Souza, D.W.4
Paul, S.5
Mulligan, R.C.6
Smith, A.E.7
Welsh, M.J.8
-
2
-
-
0041806510
-
A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification
-
Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc. Natl. Acad. Sci. USA. 100:9017-9022.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 9017-9022
-
-
Brelidze, T.I.1
Niu, X.2
Magleby, K.L.3
-
4
-
-
0042377364
-
Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels
-
Chen, M.-F., and T.-Y. Chen. 2003. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122:133-145.
-
(2003)
J. Gen. Physiol.
, vol.122
, pp. 133-145
-
-
Chen, M.-F.1
Chen, T.-Y.2
-
5
-
-
0030893916
-
Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel
-
Cheung, M., and M.H. Akabas. 1997. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. J. Gen. Physiol. 109:289-299.
-
(1997)
J. Gen. Physiol.
, vol.109
, pp. 289-299
-
-
Cheung, M.1
Akabas, M.H.2
-
6
-
-
0033605158
-
Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge
-
Cotten, J.F., and M.J. Welsh. 1999. Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge. J. Biol. Chem. 274:5429-5435.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 5429-5435
-
-
Cotten, J.F.1
Welsh, M.J.2
-
7
-
-
18544375165
-
Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues
-
D'Avanzo, N., H.C. Cho, I. Tolokh, R. Pekhletski, I. Tolokh, C. Gray, S. Goldman, and P. Backx. 2005. Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues. J. Gen. Physiol. 125:493-503.
-
(2005)
J. Gen. Physiol.
, vol.125
, pp. 493-503
-
-
D'Avanzo, N.1
Cho, H.C.2
Tolokh, I.3
Pekhletski, R.4
Tolokh, I.5
Gray, C.6
Goldman, S.7
Backx, P.8
-
9
-
-
0032232313
-
Topological model of membrane domain of the cystic fibrosis transmembrane conductance regulator
-
Gallet, X., F. Festy, P. Ducarme, R. Brasseur, and A. Thomas-Soumarmon. 1998. Topological model of membrane domain of the cystic fibrosis transmembrane conductance regulator. J. Mol. Graph. Model. 16:72-82.
-
(1998)
J. Mol. Graph. Model.
, vol.16
, pp. 72-82
-
-
Gallet, X.1
Festy, F.2
Ducarme, P.3
Brasseur, R.4
Thomas-Soumarmon, A.5
-
10
-
-
11244339684
-
Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore
-
Ge, N., C.N. Muise, X. Gong, and P. Linsdell. 2004. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Biol. Chem. 279:55283-55289.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55283-55289
-
-
Ge, N.1
Muise, C.N.2
Gong, X.3
Linsdell, P.4
-
11
-
-
0344304517
-
Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore
-
Gong, X., and P. Linsdell. 2003a. Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. J. Gen. Physiol. 122:673-687.
-
(2003)
J. Gen. Physiol.
, vol.122
, pp. 673-687
-
-
Gong, X.1
Linsdell, P.2
-
12
-
-
0038120974
-
Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore
-
Gong, X., and P. Linsdell. 2003b. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. J. Physiol. 549:387-397.
-
(2003)
J. Physiol.
, vol.549
, pp. 387-397
-
-
Gong, X.1
Linsdell, P.2
-
14
-
-
0026026676
-
Surface charges and ion channel function
-
Green, W.N., and O.S. Andersen. 1991. Surface charges and ion channel function. Annu. Rev. Physiol. 53:341-359.
-
(1991)
Annu. Rev. Physiol.
, vol.53
, pp. 341-359
-
-
Green, W.N.1
Andersen, O.S.2
-
15
-
-
0033608961
-
Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel
-
Guinamard, R., and M.H. Akabas. 1999. Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry. 38:5528-5537.
-
(1999)
Biochemistry
, vol.38
, pp. 5528-5537
-
-
Guinamard, R.1
Akabas, M.H.2
-
17
-
-
0023748825
-
Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance
-
Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, and S. Numa. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature. 335:645-648.
-
(1988)
Nature
, vol.335
, pp. 645-648
-
-
Imoto, K.1
Busch, C.2
Sakmann, B.3
Mishina, M.4
Konno, T.5
Nakai, J.6
Bujo, H.7
Mori, Y.8
Fukuda, K.9
Numa, S.10
-
18
-
-
15744390354
-
Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore
-
Linsdell, P. 2005. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Biol. Chem. 280:8945-8950.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 8945-8950
-
-
Linsdell, P.1
-
19
-
-
32544435783
-
Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel
-
Linsdell, P. 2006. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp. Physiol. 91:123-129.
-
(2006)
Exp. Physiol.
, vol.91
, pp. 123-129
-
-
Linsdell, P.1
-
20
-
-
0029861859
-
- channels expressed in a mammalian cell line and its regulation by a critical pore residue
-
- channels expressed in a mammalian cell line and its regulation by a critical pore residue. J. Physiol. 496:687-693.
-
(1996)
J. Physiol.
, vol.496
, pp. 687-693
-
-
Linsdell, P.1
Hanrahan, J.W.2
-
21
-
-
0031954021
-
Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel
-
Linsdell, P., and J.W. Hanrahan. 1998. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 111:601-614.
-
(1998)
J. Gen. Physiol.
, vol.111
, pp. 601-614
-
-
Linsdell, P.1
Hanrahan, J.W.2
-
23
-
-
0031910471
-
Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore
-
Mansoura, M.K., S.S. Smith, A.D. Choi, N.W. Richards, T.V. Strong, M.L. Drumm, F.S. Collins, and D.C. Dawson. 1998. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore. Biophys. J. 74:1320-1332.
-
(1998)
Biophys. J.
, vol.74
, pp. 1320-1332
-
-
Mansoura, M.K.1
Smith, S.S.2
Choi, A.D.3
Richards, N.W.4
Strong, T.V.5
Drumm, M.L.6
Collins, F.S.7
Dawson, D.C.8
-
24
-
-
0033898228
-
Permeation through the CFTR chloride channel
-
McCarty, N.A. 2000. Permeation through the CFTR chloride channel. J. Exp. Biol. 203:1947-1962.
-
(2000)
J. Exp. Biol.
, vol.203
, pp. 1947-1962
-
-
McCarty, N.A.1
-
25
-
-
0035999832
-
Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels
-
Moorhouse, A.J., A. Keramidas, A. Zaykin, P.R. Schofield, and P.H. Barry. 2002. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. J. Gen. Physiol. 119:411-425.
-
(2002)
J. Gen. Physiol.
, vol.119
, pp. 411-425
-
-
Moorhouse, A.J.1
Keramidas, A.2
Zaykin, A.3
Schofield, P.R.4
Barry, P.H.5
-
26
-
-
0043074453
-
Electrostatic tuning of ion conductance in potassium channels
-
Nimigean, C.M., J.S. Chappie, and C. Miller. 2003. Electrostatic tuning of ion conductance in potassium channels. Biochemistry. 42:9263-9268.
-
(2003)
Biochemistry
, vol.42
, pp. 9263-9268
-
-
Nimigean, C.M.1
Chappie, J.S.2
Miller, C.3
-
27
-
-
0024424270
-
Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA
-
Riordan, J.R., J.M. Rommens, B. Kerem, A. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plasvik, J.-L. Chou, et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 245:1066-1073.
-
(1989)
Science
, vol.245
, pp. 1066-1073
-
-
Riordan, J.R.1
Rommens, J.M.2
Kerem, B.3
Alon, A.4
Rozmahel, R.5
Grzelczak, Z.6
Zielenski, J.7
Lok, S.8
Plasvik, N.9
Chou, J.-L.10
-
28
-
-
0029910820
-
Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity
-
Seibert, F.S., P. Linsdell, T.W. Loo, J.W. Hanrahan, J.R. Riordan, and D.M. Clarke. 1996. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J. Biol. Chem. 271:27493-27499.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27493-27499
-
-
Seibert, F.S.1
Linsdell, P.2
Loo, T.W.3
Hanrahan, J.W.4
Riordan, J.R.5
Clarke, D.M.6
-
29
-
-
0034774836
-
CFTR: Covalent and noncovalent modification suggests a role for fixed charges in anion conduction
-
Smith, S.S., X. Liu, Z.-R. Zhang, F. Sun, T.E. Kriewall, N.A. McCarty, and D.C. Dawson. 2001. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J. Gen. Physiol. 118:407-431.
-
(2001)
J. Gen. Physiol.
, vol.118
, pp. 407-431
-
-
Smith, S.S.1
Liu, X.2
Zhang, Z.-R.3
Sun, F.4
Kriewall, T.E.5
McCarty, N.A.6
Dawson, D.C.7
-
30
-
-
0030964656
-
Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels
-
Tabcharani, J.A., P. Linsdell, and J.W. Hanrahan. 1997. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J. Gen. Physiol. 110:341-354.
-
(1997)
J. Gen. Physiol.
, vol.110
, pp. 341-354
-
-
Tabcharani, J.A.1
Linsdell, P.2
Hanrahan, J.W.3
-
31
-
-
23244435078
-
Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor
-
Wang, Y., L. Xu, D.A. Pasek, D. Gillespie, and G. Meissner. 2005. Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor. Biophys. J. 89:256-265.
-
(2005)
Biophys. J.
, vol.89
, pp. 256-265
-
-
Wang, Y.1
Xu, L.2
Pasek, D.A.3
Gillespie, D.4
Meissner, G.5
-
32
-
-
0022599511
-
Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium
-
Worley, J.F., R.J. French, and B.K. Krueger. 1986. Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium. J. Gen. Physiol. 87:327-349.
-
(1986)
J. Gen. Physiol.
, vol.87
, pp. 327-349
-
-
Worley, J.F.1
French, R.J.2
Krueger, B.K.3
|