메뉴 건너뛰기




Volumn 70, Issue 1-3, 2006, Pages 351-361

Generalization ability of Boolean functions implemented in feedforward neural networks

Author keywords

Complexity; Ferromagnetic systems; Learning; Parity; Perceptrons; Sensitivity

Indexed keywords

BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; COMPUTER SIMULATION;

EID: 33646505428     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.01.025     Document Type: Article
Times cited : (34)

References (48)
  • 1
    • 33750326379 scopus 로고    scopus 로고
    • M. Anthony, Boolean functions and artificial neural networks. CDAM Research Report LSE-CDAM-2003-01, in: Y. Crama, P. Hammer (Eds.), Boolean Functions: Volume II, 2006, to appear.
  • 2
    • 0001160588 scopus 로고
    • What size of neural net gives valid generalization?
    • Baum B.E. What size of neural net gives valid generalization?. Neural Comput. 1 (1989) 151-160
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, B.E.1
  • 3
    • 0001524477 scopus 로고
    • A Boolean neural network approach for the travelling salesman problem
    • Bhide S., John N., and Kabuka M.R. A Boolean neural network approach for the travelling salesman problem. IEEE Trans. Comput. 42 (1993) 1271-1278
    • (1993) IEEE Trans. Comput. , vol.42 , pp. 1271-1278
    • Bhide, S.1    John, N.2    Kabuka, M.R.3
  • 4
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • Blum A.L., and Rivest R.L. Training a 3-node neural network is NP-complete. Neural Networks 5 (1992) 117-127
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 5
    • 0031221311 scopus 로고    scopus 로고
    • The average sensitivity of bounded-depth circuits
    • Boppana R.B. The average sensitivity of bounded-depth circuits. Inform. Process. Lett. 63 (1997) 257-261
    • (1997) Inform. Process. Lett. , vol.63 , pp. 257-261
    • Boppana, R.B.1
  • 6
    • 84898932856 scopus 로고    scopus 로고
    • R. Caruana, S. Lawrence, C. Lee Giles, Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping, Advances in Neural Information Processing Systems, MIT Press, Denver, 13 (2001) 402-408.
  • 7
    • 33750373911 scopus 로고    scopus 로고
    • A. Chojnacki, L. Jozwiak, An effective and efficient method for functional decomposition of Boolean functions based on information relationships measures, in: Proceedings of Design and Diagnostics of Electronic Circuits and Systems, DDECS'2000, Smolenice, Slovakia.
  • 9
    • 0035330112 scopus 로고    scopus 로고
    • Mapping Boolean functions with neural networks having binary weights and zero thresholds
    • Deolalikar V. Mapping Boolean functions with neural networks having binary weights and zero thresholds. IEEE Trans. Neural Networks 12 (2001) 639-642
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 639-642
    • Deolalikar, V.1
  • 11
    • 0034609774 scopus 로고    scopus 로고
    • Minimization of Boolean complexity in human concept learning
    • Feldman J. Minimization of Boolean complexity in human concept learning. Nature 407 (2000) 572-573
    • (2000) Nature , vol.407 , pp. 572-573
    • Feldman, J.1
  • 12
    • 0034293035 scopus 로고    scopus 로고
    • Generalization and selection of examples in feedforward neural networks
    • Franco L., and Cannas S.A. Generalization and selection of examples in feedforward neural networks. Neural Comput. 12 (2000) 2405-2426
    • (2000) Neural Comput. , vol.12 , pp. 2405-2426
    • Franco, L.1    Cannas, S.A.2
  • 13
    • 0035505551 scopus 로고    scopus 로고
    • Generalization properties of modular networks implementing the parity function
    • Franco L., and Cannas S.A. Generalization properties of modular networks implementing the parity function. IEEE Trans. Neural Networks 12 (2001) 1306-1313
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1306-1313
    • Franco, L.1    Cannas, S.A.2
  • 14
    • 0346846404 scopus 로고    scopus 로고
    • Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell
    • Franco L., and Cannas S.A. Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell. Physica A 332 (2004) 337-348
    • (2004) Physica A , vol.332 , pp. 337-348
    • Franco, L.1    Cannas, S.A.2
  • 15
    • 25144436369 scopus 로고    scopus 로고
    • L. Franco, J.M. Jerez, J.M. Bravo-Montoya, Role of function complexity and network size in the generalization ability of feedforward networks, in: Proceedings of IWANN'05, Vilanova i la Geltrú, Spain, Lectures Notes in Computer Science, vol. 3512, 2005, pp. 1-8.
  • 16
    • 0002065410 scopus 로고
    • Information and Complexity Measures in Dynamical Systems
    • Plenum press, New York
    • Grassberger P. Information and Complexity Measures in Dynamical Systems. Information Dynamics (1991), Plenum press, New York 15-33
    • (1991) Information Dynamics , pp. 15-33
    • Grassberger, P.1
  • 19
    • 0029264329 scopus 로고
    • Generalization and PAC learning: some new results for the class of generalized single layer networks
    • Holden S.B., and Rayner P.J.W. Generalization and PAC learning: some new results for the class of generalized single layer networks. IEEE Trans. Neural Networks 6 (1993) 368-380
    • (1993) IEEE Trans. Neural Networks , vol.6 , pp. 368-380
    • Holden, S.B.1    Rayner, P.J.W.2
  • 20
    • 33750377267 scopus 로고
    • Synthesis of minimal threshold logic networks
    • Hopcroft J., and Mattson R. Synthesis of minimal threshold logic networks. IEEE Trans. Electron. Comput. EC-14 (1965) 552-560
    • (1965) IEEE Trans. Electron. Comput. , vol.EC-14 , pp. 552-560
    • Hopcroft, J.1    Mattson, R.2
  • 21
    • 0031701574 scopus 로고    scopus 로고
    • Capacity of two-layer feedforward neural networks with binary weights
    • Ji C., and Psaltis D. Capacity of two-layer feedforward neural networks with binary weights. IEEE Trans. Inform. Theory 44 (1998) 256-268
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 256-268
    • Ji, C.1    Psaltis, D.2
  • 24
    • 33750347748 scopus 로고    scopus 로고
    • S. Lawrence, C.L. Giles, A.C. Tsoi, What size neural network gives optimal generalization? Convergence properties of backpropagation, Technical Report UMIACSTR -96-22 and CS-TR-3617, Institute for Advanced Computer Studies, University of Maryland, 1996.
  • 25
    • 0005381638 scopus 로고    scopus 로고
    • R.A. Legenstein, W. Maass, Foundations for a circuit complexity theory of sensory processing, in: Advances in Neural Information Processing Systems, MIT Press, Denver, vol. 13, 2001, pp. 94-110.
  • 26
    • 0027627287 scopus 로고
    • Constant depth circuits, Fourier transform and learnability
    • Linial N., Mansour Y., and Nisan N. Constant depth circuits, Fourier transform and learnability. J. ACM 40 (1993) 607-620
    • (1993) J. ACM , vol.40 , pp. 607-620
    • Linial, N.1    Mansour, Y.2    Nisan, N.3
  • 30
    • 33750323028 scopus 로고    scopus 로고
    • A.L. Oliveira, A. Sangiovanni-Vincentelli, Learning complex Boolean functions: algorithms and applications, in: Advances in Neural Information Processing Systems, vol. 6, Morgan Kaufmann, Denver, 1993, pp. 911-918.
  • 31
    • 0037901061 scopus 로고
    • Computational complexity of neural networks: a survey
    • Orponen P. Computational complexity of neural networks: a survey. Nordic J. Comput. 1 (1994) 94-110
    • (1994) Nordic J. Comput. , vol.1 , pp. 94-110
    • Orponen, P.1
  • 34
    • 0343844383 scopus 로고    scopus 로고
    • Functional decomposition with an efficient input support selection for sub-functions based on information relationship measures
    • Rawski M., Jozwiak L., and Luba T. Functional decomposition with an efficient input support selection for sub-functions based on information relationship measures. J. Syst. Architect. 47 (2001) 137-155
    • (2001) J. Syst. Architect. , vol.47 , pp. 137-155
    • Rawski, M.1    Jozwiak, L.2    Luba, T.3
  • 37
    • 84938487169 scopus 로고
    • The synthesis of two-terminal switching circuits
    • Shannon C.E. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28 (1949) 59-98
    • (1949) Bell Syst. Tech. J. , vol.28 , pp. 59-98
    • Shannon, C.E.1
  • 38
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • Sima J. Back-propagation is not efficient. Neural Networks 9 (1996) 1017-1023
    • (1996) Neural Networks , vol.9 , pp. 1017-1023
    • Sima, J.1
  • 39
    • 10744230566 scopus 로고    scopus 로고
    • General-purpose computation with neural networks: a survey of complexity theoretic results
    • Sima J., and Orponen P. General-purpose computation with neural networks: a survey of complexity theoretic results. Neural Comput. 15 (2003) 2727-2778
    • (2003) Neural Comput. , vol.15 , pp. 2727-2778
    • Sima, J.1    Orponen, P.2
  • 41
    • 72949112635 scopus 로고    scopus 로고
    • C. Thornton, Parity: the problem that won't go away, in: Proceedings of AI-96, Toronto, 1996, pp. 362-374.
  • 42
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency of the method of empirical risk minimization
    • Vapnik V.N., and Chervonenkis A.J. The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition Image Anal. 1 (1991) 284-305
    • (1991) Pattern Recognition Image Anal. , vol.1 , pp. 284-305
    • Vapnik, V.N.1    Chervonenkis, A.J.2
  • 46
    • 33750302652 scopus 로고    scopus 로고
    • R.O. Winder, Threshold Logic, Ph.D. Dissertation, Department of Mathematics, Princeton University, 1962.
  • 47
    • 33750303161 scopus 로고    scopus 로고
    • D.H. Wolpert (Ed.), The mathematics of generalization, in: Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning, Santa Fe Institute Studies in the Sciences of Complexity, Volume XX, Addison-Wesley, Reading, MA, 1995.
  • 48
    • 0032533065 scopus 로고    scopus 로고
    • Antipredictable sequences: harder to predict than random sequences
    • Zhu H., and Kinzel W. Antipredictable sequences: harder to predict than random sequences. Neural Comput. 10 (1998) 2219-2230
    • (1998) Neural Comput. , vol.10 , pp. 2219-2230
    • Zhu, H.1    Kinzel, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.