-
1
-
-
85143191705
-
-
Barras, C., Gauvain, J.-L., 2003. Feature and score normalization for speaker verification of cellular data. In: Proc. ICASSP, vol. 2, pp. 49-52.
-
-
-
-
3
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
Broomhead D.S., and Lowe D. Multivariable functional interpolation and adaptive networks. Complex Systems 2 (1988) 321-355
-
(1988)
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
4
-
-
0028750304
-
Training neural nets through stochastic minimization
-
Brunelli R. Training neural nets through stochastic minimization. Neural Networks 7 9 (1994) 1405-1412
-
(1994)
Neural Networks
, vol.7
, Issue.9
, pp. 1405-1412
-
-
Brunelli, R.1
-
6
-
-
0029325844
-
Robust estimation of correlation with applications to computer vision
-
Brunelli R., and Messelodi S. Robust estimation of correlation with applications to computer vision. Pattern Recognition 28 (1995) 833-841
-
(1995)
Pattern Recognition
, vol.28
, pp. 833-841
-
-
Brunelli, R.1
Messelodi, S.2
-
7
-
-
0029255154
-
Stochastic minimization with adaptive memory
-
Brunelli R., and Tecchiolli G. Stochastic minimization with adaptive memory. J. Comput. Appl. Math. 57 (1995) 329-343
-
(1995)
J. Comput. Appl. Math.
, vol.57
, pp. 329-343
-
-
Brunelli, R.1
Tecchiolli, G.2
-
8
-
-
0000667930
-
Training ν-support vector classifiers: Theory and algorithms
-
Chang C.-C., and Lin C.-J. Training ν-support vector classifiers: Theory and algorithms. Neural Comput. 13 9 (2001) 2119-2147
-
(2001)
Neural Comput.
, vol.13
, Issue.9
, pp. 2119-2147
-
-
Chang, C.-C.1
Lin, C.-J.2
-
9
-
-
0036161011
-
Choosing multiple parameters for Support Vector Machines
-
Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for Support Vector Machines. Machine Learn. 46 1 (2002) 131-159
-
(2002)
Machine Learn.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
10
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
Cucker F., and Smale S. Best choices for regularization parameters in learning theory: On the bias-variance problem. Found. Comput. Math. 2 4 (2002) 413-428
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.4
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
11
-
-
0034419669
-
Regularization Networks and Support Vector Machines
-
Evgeniou T., Pontil M., and Poggio T. Regularization Networks and Support Vector Machines. Adv. Comput. Math. 13 1 (2000) 1-50
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0003019863
-
Speaker verification using randomized phrase prompting
-
Higgins A., Bahler L., and Porter J. Speaker verification using randomized phrase prompting. Digital Signal Process. 1 (1991) 89-106
-
(1991)
Digital Signal Process.
, vol.1
, pp. 89-106
-
-
Higgins, A.1
Bahler, L.2
Porter, J.3
-
13
-
-
0033326471
-
-
Jain, A., Duta, N., 1999. Deformable matching of hand shapes for user verification. In: Proc. ICIP '99. Kobe, Japan.
-
-
-
-
14
-
-
0036448934
-
-
Jain, A.K., Ross, A., 2002. Learning user-specific parameters in a multibiometric system. In: Proc. ICIP, Rochester, pp. 57-60.
-
-
-
-
15
-
-
33749672010
-
-
Jain, A., Ross, A., Pankanti, S., 1999. A prototype hand geometry-based verification system. In: Proc. Audio- and Video-Based Personal Identification, Washington, DC, USA, pp. 166-171.
-
-
-
-
16
-
-
28044452487
-
-
Mak, M., Zhang, W., He, M., 2001. A new two-stage scoring normalization approach to speaker verification. In: Proc. Internat. Sym. on Intelligent Multimedia, Video and Speech Processing, Hong Kong, pp. 107-110.
-
-
-
-
17
-
-
0036565806
-
Learning gender with support faces
-
Moghadam B., and Yang M.-H. Learning gender with support faces. IEEE Trans. PAMI 24 7 (2002) 707-711
-
(2002)
IEEE Trans. PAMI
, vol.24
, Issue.7
, pp. 707-711
-
-
Moghadam, B.1
Yang, M.-H.2
-
19
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio T., and Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 247 (1990) 978-982
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
20
-
-
9444250658
-
Regularized Least Squares Classification
-
Advances in Learning Theory: Methods, Model and Applications, IOS Press, Amsterdam
-
Rifkin R., Yeo G., and Poggio T. Regularized Least Squares Classification. Advances in Learning Theory: Methods, Model and Applications. NATO Science Series III: Computer and Systems Sciences vol. 190 (2003), IOS Press, Amsterdam
-
(2003)
NATO Science Series III: Computer and Systems Sciences
, vol.190
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
21
-
-
33749653989
-
-
Rosenberg, A.E., Delong, J., Lee, C.-H., Juang, B.-H., Soong, F.K., 1992. The use of cohort normalized scores for speaker recognition. In: Proc. ICSLP-92, Banff, pp. 599-602.
-
-
-
-
22
-
-
0003408420
-
-
MIT Press
-
Schölkopf B., and Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (2001), MIT Press
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
23
-
-
0031272926
-
Comparing Support Vector Machines with Gaussian kernels to Radial Basis Function classifiers
-
Schölkopf B., Sung K.-K., Burges C., Girosi F., Niyogi P., Poggio T., and Vapnik V. Comparing Support Vector Machines with Gaussian kernels to Radial Basis Function classifiers. IEEE Trans. Signal Process. 45 11 (1997) 2758-2765
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.-K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
25
-
-
10044277812
-
-
Zhang, P., Peng, J., 2004. SVM vs Regularized Least Squares Classification. In: ICPR (1), pp. 176-179.
-
-
-
|