메뉴 건너뛰기




Volumn 18, Issue 10, 2006, Pages 2529-2567

Dynamics and topographic organization of recursive self-organizing maps

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; HUMAN; LANGUAGE; MATHEMATICAL COMPUTING; NONLINEAR SYSTEM; PROBABILITY;

EID: 33749430260     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2006.18.10.2529     Document Type: Article
Times cited : (21)

References (32)
  • 2
    • 0037928080 scopus 로고    scopus 로고
    • A taxanomy of spatiotemporal connectionist networks revisited: The unsupervised case
    • Barreto, de A. G., Araújo, A., & Kremer, S. (2003). A taxanomy of spatiotemporal connectionist networks revisited: The unsupervised case. Neural Computation, 15(6), 1255-1320.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1255-1320
    • De Barreto, A.G.1    Araújo, A.2    Kremer, S.3
  • 3
    • 0027187261 scopus 로고
    • The temporal Kohonen map
    • Chappell, G., & Taylor, J. (1993). The temporal Kohonen map. Neural Networks, 6, 441-445.
    • (1993) Neural Networks , vol.6 , pp. 441-445
    • Chappell, G.1    Taylor, J.2
  • 4
    • 0028675409 scopus 로고
    • Chaos game representation of protein structures
    • Fiser, A., Tusnady, G., & Simon, I. (1994). Chaos game representation of protein structures. Journal of Molecular Graphics, 12(4), 302-304.
    • (1994) Journal of Molecular Graphics , vol.12 , Issue.4 , pp. 302-304
    • Fiser, A.1    Tusnady, G.2    Simon, I.3
  • 7
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • Hammer, B., Micheli, A., Strickert, M., & Sperduti, A. (2004). A general framework for unsupervised processing of structured data. Neurocomputing, 57, 3-35.
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Strickert, M.3    Sperduti, A.4
  • 8
    • 0042326343 scopus 로고    scopus 로고
    • Neural networks with small weights implement finite memory machines
    • Hammer, B., & Tiňo, P. (2003). Neural networks with small weights implement finite memory machines. Neural Computation, 15(8), 1897-1926.
    • (2003) Neural Computation , vol.15 , Issue.8 , pp. 1897-1926
    • Hammer, B.1    Tiňo, P.2
  • 9
    • 0033722203 scopus 로고    scopus 로고
    • Fractals from genomes - Exact solutions of a biology-inspired problem
    • Hao, B.-L. (2000). Fractals from genomes - exact solutions of a biology-inspired problem. Physica A, 282, 225-246.
    • (2000) Physica A , vol.282 , pp. 225-246
    • Hao, B.-L.1
  • 10
    • 0034190318 scopus 로고    scopus 로고
    • Fractals related to long DNA sequences and complete genomes
    • Hao, B.-L., Lee, H., & Zhang, S. (2000). Fractals related to long DNA sequences and complete genomes. Chaos, Solitons and Fractals, 11, 825-836.
    • (2000) Chaos, Solitons and Fractals , vol.11 , pp. 825-836
    • Hao, B.-L.1    Lee, H.2    Zhang, S.3
  • 12
    • 85153931963 scopus 로고
    • Sardnet: A self-organizing feature map for sequences
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.), San Francisco: Morgan Kaufmann
    • James, D., & Miikkulainen, R. (1995). Sardnet: A self-organizing feature map for sequences. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 577-584). San Francisco: Morgan Kaufmann.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 577-584
    • James, D.1    Miikkulainen, R.2
  • 13
    • 0025340372 scopus 로고
    • Chaos game representation of gene structure
    • Jeffrey, J. (1990). Chaos game representation of gene structure. Nucleic Acids Research, 18(8), 2163-2170.
    • (1990) Nucleic Acids Research , vol.18 , Issue.8 , pp. 2163-2170
    • Jeffrey, J.1
  • 14
    • 0030530020 scopus 로고    scopus 로고
    • Measures of full dimension on affine invariant sets
    • Kenyon, R., & Peres, Y. (1996). Measures of full dimension on affine invariant sets. Ergodic Theory and Dynamical Systems, 16, 307-323.
    • (1996) Ergodic Theory and Dynamical Systems , vol.16 , pp. 307-323
    • Kenyon, R.1    Peres, Y.2
  • 15
    • 0020068152 scopus 로고
    • Self-organizing formation of topologically correct feature maps
    • Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 16
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1479.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1479
    • Kohonen, T.1
  • 18
    • 0036791992 scopus 로고    scopus 로고
    • Self-organizing maps with recursive neighborhood adaptation
    • Lee, J., & Verleysen, M. (2002). Self-organizing maps with recursive neighborhood adaptation. Neural Networks, 15(8-9), 993-1003.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 993-1003
    • Lee, J.1    Verleysen, M.2
  • 20
    • 0036792320 scopus 로고    scopus 로고
    • Principles and networks for self-organization in space-time
    • Principe, J., Euliano, N., & Garani, S. (2002). Principles and networks for self-organization in space-time. Neural Networks, 15(8-9), 1069-1083.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1069-1083
    • Principe, J.1    Euliano, N.2    Garani, S.3
  • 22
    • 0742324117 scopus 로고    scopus 로고
    • Temporally asymmetric learning supports sequence processing in multi-winner self-organizingmaps
    • Schulz, R., & Reggia, J. (2004). Temporally asymmetric learning supports sequence processing in multi-winner self-organizingmaps. Neural Computation, 16(3), 535-561.
    • (2004) Neural Computation , vol.16 , Issue.3 , pp. 535-561
    • Schulz, R.1    Reggia, J.2
  • 24
    • 15844418774 scopus 로고    scopus 로고
    • Merge som for temporal data
    • Strickert, M., & Hammer, B. (2005). Merge som for temporal data. Neurocomputing, 64, 39-72.
    • (2005) Neurocomputing , vol.64 , pp. 39-72
    • Strickert, M.1    Hammer, B.2
  • 25
    • 0037083889 scopus 로고    scopus 로고
    • Multifractal properties of Hao's geometric representations of DNA sequences
    • Tiňo, P. (2002). Multifractal properties of Hao's geometric representations of DNA sequences. Physica A: Statistical Mechanics and its Applications, 304(3-4), 480-494.
    • (2002) Physica A: Statistical Mechanics and Its Applications , vol.304 , Issue.3-4 , pp. 480-494
    • Tiňo, P.1
  • 27
    • 0000860629 scopus 로고    scopus 로고
    • Predicting the future of discrete sequences from fractal representations of the past
    • Tiňo, P., & Dorffner, G. (2001). Predicting the future of discrete sequences from fractal representations of the past. Machine Learning, 45(2), 187-218.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 187-218
    • Tiňo, P.1    Dorffner, G.2
  • 28
    • 0042827445 scopus 로고    scopus 로고
    • Architectural bias in recurrent neural networks: Fractal analysis
    • Tiňo, P., & Hammer, B. (2004). Architectural bias in recurrent neural networks: Fractal analysis. Neural Computation, 15(8), 1931-1957.
    • (2004) Neural Computation , vol.15 , Issue.8 , pp. 1931-1957
    • Tiňo, P.1    Hammer, B.2
  • 29
    • 0033097317 scopus 로고    scopus 로고
    • Extracting finite state representations from recurrent neural networks trained on chaotic symbolic sequences
    • Tiňo, P., & Köteles, M. (1999). Extracting finite state representations from recurrent neural networks trained on chaotic symbolic sequences. IEEE Transactions on Neural Networks, 10(2), 284-302.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 284-302
    • Tiňo, P.1    Köteles, M.2
  • 30
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • Voegtlin, T. (2002). Recursive self-organizing maps. Neural Networks, 15(8-9), 979-992.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 979-992
    • Voegtlin, T.1
  • 31
    • 0038266121 scopus 로고    scopus 로고
    • The time-organized map algorithm: Extending the self-organizing map to spatiotemporal signals
    • Wiemer, J. (2003). The time-organized map algorithm: Extending the self-organizing map to spatiotemporal signals. Neural Computation, 16, 1143-1171.
    • (2003) Neural Computation , vol.16 , pp. 1143-1171
    • Wiemer, J.1
  • 32
    • 0036128861 scopus 로고    scopus 로고
    • ViSOM - A novel method for multivariate data projection and structure visualisation
    • Yin, H. (2002). ViSOM - a novel method for multivariate data projection and structure visualisation. IEEE Transactions on Neural Networks, 13(1), 237-243.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 237-243
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.