-
1
-
-
0002178646
-
Analytic functions in topological vector spaces
-
Bochnak J. and Siciak J., Analytic Functions in Topological Vector Spaces, Studia Math. 39 (1971) 77-112.
-
(1971)
Studia Math.
, vol.39
, pp. 77-112
-
-
Bochnak, J.1
Siciak, J.2
-
2
-
-
0003088619
-
Non-enlargible lie algebras
-
van Est W. and Korthagen Th., Non-Enlargible Lie Algebras, Indag. Math. 26(1964) 15-31.
-
(1964)
Indag. Math.
, vol.26
, pp. 15-31
-
-
Van Est, W.1
Korthagen, T.2
-
3
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional lie groups
-
Glockner H., Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups, J. Funct. Anal. 194 (2002) 347-409.
-
(2002)
J. Funct. Anal.
, vol.194
, pp. 347-409
-
-
Glockner, H.1
-
4
-
-
0036446267
-
Algebras whose groups of units are lie groups
-
Glockner H., Algebras Whose Groups of Units are Lie Groups, Studia Math. 153 (2002) 147-177.
-
(2002)
Studia Math.
, vol.153
, pp. 147-177
-
-
Glockner, H.1
-
5
-
-
85053263065
-
-
Glockner H., Patched Locally Convex Spaces, Almost Local Mappings, and Diffeomorphism Groups of Non-Compact Manifolds, Manuscript, 2002.
-
Glockner H., Patched Locally Convex Spaces, Almost Local Mappings, and Diffeomorphism Groups of Non-Compact Manifolds, Manuscript, 2002.
-
-
-
-
6
-
-
85053278570
-
-
Glockner H., Infinite-Dimensional Analysis, Lecture notes of a course held at Darmstadt University of Technology, Winter Semester 2002-2003.
-
Glockner H., Infinite-Dimensional Analysis, Lecture notes of a course held at Darmstadt University of Technology, Winter Semester 2002-2003.
-
-
-
-
7
-
-
1442303110
-
Direct limit lie groups and manifolds
-
Glockner H., Direct Limit Lie Groups and Manifolds, J. Math. Kyoto Univ. 43 (2003) 1-26.
-
(2003)
J. Math. Kyoto Univ.
, vol.43
, pp. 1-26
-
-
Glockner, H.1
-
8
-
-
27744545987
-
Holder continuous homomorphisms between infinite- dimensional lie groups are smooth
-
Glockner H., Holder Continuous Homomorphisms Between Infinite- Dimensional Lie Groups are Smooth, J. Funct. Anal. 228 (2005) 419-444.
-
(2005)
J. Funct. Anal.
, vol.228
, pp. 419-444
-
-
Glockner, H.1
-
9
-
-
21644431711
-
Conveniently holder homomorphisms are smooth in the convenient sense
-
Glockner H., Conveniently Holder Homomorphisms are Smooth in the Convenient Sense, Ann. Global Anal. Geom. 27 (2005) 227-255.
-
(2005)
Ann. Global Anal. Geom.
, vol.27
, pp. 227-255
-
-
Glockner, H.1
-
10
-
-
33748993020
-
Fundamentals of direct limit lie theory
-
Glockner H., Fundamentals of Direct Limit Lie Theory, Compositio Math. 141 (2005) 1551-1577.
-
(2005)
Compositio Math.
, vol.141
, pp. 1551-1577
-
-
Glockner, H.1
-
11
-
-
0042669975
-
Banach-lie quotients enlargibility, and universal complexifications
-
Glockner H. and Neeb K.-H., Banach-Lie Quotients, Enlargibility, and Universal Complexifications, J. Reine Angew. Math. 560 (2003) 1-28.
-
(2003)
J. Reine Angew. Math.
, vol.560
, pp. 1-28
-
-
Glockner, H.1
Neeb, K.-H.2
-
12
-
-
85053238099
-
-
Glockner H. and Neeb K.-H., Infinite-Dimensional Lie Groups, Vol.1, Basic Theory and Main Examples, book in preparation.
-
Glockner H. and Neeb K.-H., Infinite-Dimensional Lie Groups, Vol.1, Basic Theory and Main Examples, book in preparation.
-
-
-
-
13
-
-
85053259256
-
-
Glockner H. and Neeb K.-H., Infinite-Dimensional Lie Groups, Vol.11, Geometry and Topology, book in preparation.
-
Glockner H. and Neeb K.-H., Infinite-Dimensional Lie Groups, Vol.11, Geometry and Topology, book in preparation.
-
-
-
-
14
-
-
85053271772
-
-
Hofmann K. and Morris S., The Structure of Compact Groups, de Gruyter, Berlin, 1998.
-
Hofmann K. and Morris S., The Structure of Compact Groups, de Gruyter, Berlin, 1998.
-
-
-
-
15
-
-
85053285257
-
-
Keller H., Differential Calculus in Locally Convex Spaces, Springer, Berlin, 1974.
-
Keller H., Differential Calculus in Locally Convex Spaces, Springer, Berlin, 1974.
-
-
-
-
17
-
-
85053268435
-
-
Michor P., Manifolds of Differentiable Mappings, Shiva Publishing, Orpington, 1980.
-
Michor P., Manifolds of Differentiable Mappings, Shiva Publishing, Orpington, 1980.
-
-
-
-
18
-
-
0038351150
-
Description of infinite dimensional abelian regular lie groups
-
Michor P. and Teichmann J., Description of Infinite Dimensional Abelian Regular Lie Groups, J. Lie Theory 9 (1999) 487-489.
-
(1999)
J. Lie Theory
, vol.9
, pp. 487-489
-
-
Michor, P.1
Teichmann, J.2
-
19
-
-
85053263756
-
-
Milnor J., On Infinite-Dimensional Lie Groups, Preprint, Institute for Advanced Study, Princeton, 1982.
-
Milnor J., On Infinite-Dimensional Lie Groups, Preprint, Institute for Advanced Study, Princeton, 1982.
-
-
-
-
20
-
-
0001335921
-
Remarks on infinite-dimensional lie groups
-
Les Houches Ec. d'Ete Phys. Theor. Sess. 40, B. DeWitt and R. Stora (Eds), North-Holland, Amsterdam
-
Milnor J., Remarks on Infinite-Dimensional Lie Groups, In: Relativite, Groupes et Topologie II, Les Houches Ec. d'Ete Phys. Theor. Sess. 40, B. DeWitt and R. Stora (Eds), North-Holland, Amsterdam, 1983, pp. 1007- 1057.
-
(1983)
Relativite, Groupes et Topologie II
, pp. 1007-1057
-
-
Milnor, J.1
-
21
-
-
85053284735
-
-
Montgomery D. and Zippin L., Topological Transformation Groups, Inter- science, New York, 1955.
-
Montgomery D. and Zippin L., Topological Transformation Groups, Inter- science, New York, 1955.
-
-
-
-
23
-
-
0038168011
-
Central extensions of infinite-dimensional lie groups
-
Neeb K.-H., Central Extensions of Infinite-Dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002) 1365-1442.
-
(2002)
Ann. Inst. Fourier (Grenoble)
, vol.52
, pp. 1365-1442
-
-
Neeb, K.-H.1
-
24
-
-
33645067555
-
Abelian extensions of infinite-dimensional lie groups
-
Neeb K.-H., Abelian Extensions of Infinite-Dimensional Lie Groups, Travaux Math. 15 (2004) 69-194.
-
(2004)
Travaux Math.
, vol.15
, pp. 69-194
-
-
Neeb, K.-H.1
-
25
-
-
85053261577
-
-
Neeb K.-H., Non-Abelian Extensions of Infinite-Dimensional Lie Groups, Preprint, arXiv:math.GR/0504295.
-
Neeb K.-H., Non-Abelian Extensions of Infinite-Dimensional Lie Groups, Preprint, arXiv:math.GR/0504295.
-
-
-
-
26
-
-
85053260678
-
-
Neeb K.-H., Infinite-Dimensional Lie Groups, Lecture Notes of Monastir Summer School, August 2005.
-
Neeb K.-H., Infinite-Dimensional Lie Groups, Lecture Notes of Monastir Summer School, August 2005.
-
-
-
-
27
-
-
85053247199
-
-
Omori H., Infinite-Dimensional Lie Groups, Amer. Math. Soc, Providence, 1997.
-
Omori H., Infinite-Dimensional Lie Groups, Amer. Math. Soc, Providence, 1997.
-
-
-
-
28
-
-
84972540546
-
On Regular frechet- lie groups iv. definition and fundamental theorems
-
Omori H., Maeda Y, Yoshioka A. and Kobayashi O., On Regular Frechet- Lie Groups IV. Definition and Fundamental Theorems, Tokyo J. Math. 5 (1982)365-398.
-
(1982)
Tokyo J. Math.
, vol.5
, pp. 365-398
-
-
Omori, H.1
Maeda, Y.2
Yoshioka, A.3
Kobayashi, O.4
-
29
-
-
0031493528
-
Sur Vintegrabilite Des Sous-algebres De Lie En Dimension Infinie
-
Robart Th., Sur Vintegrabilite des sous-algebres de Lie en dimension infinie, Canad. J. Math. 49 (1997) 820-839.
-
(1997)
Canad. J. Math.
, vol.49
, pp. 820-839
-
-
Robart, T.1
-
30
-
-
33748999432
-
On milnor's regularity and the path-functor for the class of infinite dimensional lie algebras of CBH type
-
Robart Th., On Milnor's Regularity and the Path-Functor for the Class of Infinite Dimensional Lie Algebras ofCBH Type, Algebras Groups Geom. 21 (2004)367-386.
-
(2004)
Algebras Groups Geom.
, vol.21
, pp. 367-386
-
-
Robart, T.1
-
31
-
-
0442320612
-
Regularity of infinite-dimensional lie groups by metric space methods
-
Teichmann J. Regularity of Infinite-Dimensional Lie Groups by Metric Space Methods, Tokyo J. Math. 24 (2001) 39-58.
-
(2001)
Tokyo J. Math.
, vol.24
, pp. 39-58
-
-
Teichmann, J.1
|