-
1
-
-
0042798593
-
A Lie group structure for Fourier integral operators
-
MALCOLM ADAMS, TUDOR RATIU and RUDOLF SCHMID, A Lie group structure for Fourier integral operators, Math. Ann. 276 (1986), 1941.
-
(1986)
Math. Ann
, vol.276
-
-
Malcolm, A.1
Tudor, R.2
Rudolf, S.3
-
5
-
-
84972540546
-
On regular Fréchet Lie groups IV, definition and fundamental theorems
-
OSAMU KOBAYASHI, AKIRA YOSHIOKA, YOSHIAKI MAEDA and HIDEKI OMORI, On regular Fréchet Lie groups IV, definition and fundamental theorems, Tokyo J. Math. 5 (1981), 365-398.
-
(1981)
Tokyo J. Math
, vol.5
, pp. 365-398
-
-
Osamu, K.1
Akira, Y.2
Yoshiaki, M.3
Hideki, O.4
-
6
-
-
0012037921
-
-
B.S. DeWitt and R. StoraLes Houches, Session XL, Elsevier Science Publishers B.V
-
JOHN MILNOR, Remarks on infinite-dimensional Lie groups, Relativity, groups and Topology II (eds. B.S. DeWitt and R. Stora), Les Houches, Session XL, Elsevier Science Publishers B.V. (1983), 1009-1057.
-
(1983)
Remarks on Infinite-Dimensional Lie Groups, Relativity, Groups and Topology II
, pp. 1009-1057
-
-
John, M.1
-
7
-
-
85035301202
-
Description of regular abelian Lie groups
-
PETER MICHOR and JOSEF TEICHMANN, Description of regular abelian Lie groups, J. Lie Theory 9 (1999), 487-489.
-
(1999)
J. Lie Theory
, vol.9
, pp. 487-489
-
-
Peter, M.1
Josef, T.2
-
9
-
-
0008059961
-
Infinite-dimensional Lie groups
-
American Mathematical Society
-
HIDEKI OMORI, Infinite-dimensional Lie groups, Translation of Mathematical Monographs 158 (1997), American Mathematical Society.
-
(1997)
Translation of Mathematical Monographs
, vol.158
-
-
Hideki, O.1
-
10
-
-
85035287364
-
A convenient approach to Trotter’s formula
-
to appear
-
JOSEF TEICHMANN, A convenient approach to Trotter’s formula, J. Lie Theory (2001), to appear.
-
(2001)
J. Lie Theory
-
-
Josef, T.1
-
12
-
-
85035253276
-
Inheritance properties of Lipschitz-metrizable groups, Proceedings of the 2000 Howard Conference
-
to appear
-
JOSEF TEICHMANN, Inheritance properties of Lipschitz-metrizable groups, Proceedings of the 2000 Howard Conference, Infinite-dimensional Lie groups in Geometry and Representation Theory (2001), to appear.
-
(2001)
Infinite-Dimensional Lie Groups in Geometry and Representation Theory
-
-
Josef, T.1
|