-
1
-
-
0002072631
-
The various definitions of the derivative in linear topological spaces
-
V.I. Averbukh O.G. Smolyanov The various definitions of the derivative in linear topological spaces Russ. Math. Survey 23 1968 67-113
-
(1968)
Russ. Math. Survey
, vol.23
, pp. 67-113
-
-
Averbukh, V.I.1
Smolyanov, O.G.2
-
2
-
-
3242810561
-
Differential calculus over general base fields and rings
-
W.H. Bertram H. Glöckner K.-H. Neeb Differential calculus over general base fields and rings Expo. Math. 22 2004 213-282
-
(2004)
Expo. Math.
, vol.22
, pp. 213-282
-
-
Bertram, W.H.1
Glöckner, H.2
Neeb, K.-H.3
-
4
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
A. Strasburger (Ed.) Banach Center Publications Warsaw
-
H. Glöckner Infinite-dimensional Lie groups without completeness restrictions in: A. Strasburger (Ed.) Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups vol. 55 2002 Banach Center Publications Warsaw 43-59
-
(2002)
Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups
, vol.55
, pp. 43-59
-
-
Glöckner, H.1
-
5
-
-
21644431711
-
Conveniently Hölder homomorphisms are smooth in the convenient sense
-
H. Glöckner Conveniently Hölder homomorphisms are smooth in the convenient sense Ann. Global Anal. Geom. 27 2005 227-255
-
(2005)
Ann. Global Anal. Geom.
, vol.27
, pp. 227-255
-
-
Glöckner, H.1
-
6
-
-
13644274024
-
Smooth Lie groups over local fields of positive characteristic need not be analytic
-
H. Glöckner Smooth Lie groups over local fields of positive characteristic need not be analytic J. Algebra 285 2005 356-371
-
(2005)
J. Algebra
, vol.285
, pp. 356-371
-
-
Glöckner, H.1
-
7
-
-
33646740001
-
Every smooth p-adic Lie group admits a compatible analytic structure
-
to appear (cf. arXiv:math.GR/0312113)
-
H. Glöckner, Every smooth p-adic Lie group admits a compatible analytic structure, Forum Math., to appear (cf. arXiv:mAth.GR/0312113).
-
Forum Math.
-
-
Glöckner, H.1
-
8
-
-
27744584700
-
Fundamentals of direct limit Lie theory
-
to appear (cf. arXiv:math.GR/0403093)
-
H. Glöckner, Fundamentals of direct limit Lie theory, Compositio Math., to appear (cf. arXiv:mAth.GR/0403093).
-
Compositio Math.
-
-
Glöckner, H.1
-
9
-
-
22144456109
-
Infinite-dimensional Lie groups over topological fields
-
preprint (cf. arXiv:math.GR/0408008)
-
H. Glöckner, Infinite-dimensional Lie groups over topological fields, preprint (cf. arXiv:mAth.GR/0408008).
-
-
-
Glöckner, H.1
-
10
-
-
27744510482
-
Open problems in the theory of infinite-dimensional Lie groups
-
(manuscript based on a talk held at the 24th Workshop on Geometric Methods in Physics, Białowieża) in preparation
-
H. Glöckner, Open problems in the theory of infinite-dimensional Lie groups (manuscript based on a talk held at the 24th Workshop on Geometric Methods in Physics, Białowieża, 2005); in preparation.
-
(2005)
-
-
Glöckner, H.1
-
11
-
-
0042669975
-
Banach-Lie quotients, enlargibility, and universal complexifications
-
H. Glöckner K.-H. Neeb Banach-Lie quotients, enlargibility, and universal complexifications J. Reine Angew. Math. 560 2003 1-28
-
(2003)
J. Reine Angew. Math.
, vol.560
, pp. 1-28
-
-
Glöckner, H.1
Neeb, K.-H.2
-
13
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
R. Hamilton The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. 7 1982 65-222
-
(1982)
Bull. Amer. Math. Soc.
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
16
-
-
0004090016
-
-
American Mathematical Society, Providence, RI
-
A. Kriegl, P.W. Michor, The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997.
-
(1997)
The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs
, vol.53
-
-
Kriegl, A.1
Michor, P.W.2
-
19
-
-
0039780355
-
On infinite dimensional Lie groups
-
Preprint, Institute for Advanced Study, Princeton
-
J. Milnor, On infinite dimensional Lie groups, Preprint, Institute for Advanced Study, Princeton, 1982.
-
(1982)
-
-
Milnor, J.1
-
20
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
B. DeWitt R. Stora (Eds.) North-Holland Amsterdam
-
J. Milnor Remarks on infinite-dimensional Lie groups in: B. DeWitt R. Stora (Eds.) Relativity, Groups and Topology II 1983 North-Holland Amsterdam 1008-1057
-
(1983)
Relativity, Groups and Topology II
, pp. 1008-1057
-
-
Milnor, J.1
-
21
-
-
0031493528
-
Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie
-
T. Robart Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie Canad. J. Math. 49 1997 820-839
-
(1997)
Canad. J. Math.
, vol.49
, pp. 820-839
-
-
Robart, T.1
|