메뉴 건너뛰기




Volumn 3242, Issue , 2004, Pages 1133-1142

Ensemble learning with evolutionary computation: Application to feature ranking

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTERS;

EID: 33747044326     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-30217-9_114     Document Type: Article
Times cited : (11)

References (21)
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997.
    • (1997) Pattern Recognition
    • Bradley, A.P.1
  • 3
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-845, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-845
    • Breiman, L.1
  • 4
    • 0000913324 scopus 로고    scopus 로고
    • SVMtorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio. SVMtorch: Support vector machines for large-scale regression problems. J. of Machine Learning Research, 1:143-160, 2001.
    • (2001) J. of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 5
    • 14344254249 scopus 로고    scopus 로고
    • Monte Carlo theory as an explanation of bagging and boosting
    • R. Esposito and L. Saitta. Monte Carlo theory as an explanation of bagging and boosting. In Proc. of IJCAI'03, pp. 499-504. 2003.
    • (2003) Proc. of IJCAI'03 , pp. 499-504
    • Esposito, R.1    Saitta, L.2
  • 6
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • L. Saitta, editor, Morgan Kaufmann
    • Y. Freund and R.E. Shapire. Experiments with a new boosting algorithm. In L. Saitta, editor, Proc. ICML'96, pp. 148-156. Morgan Kaufmann, 1996.
    • (1996) Proc. ICML'96 , pp. 148-156
    • Freund, Y.1    Shapire, R.E.2
  • 7
    • 0034320732 scopus 로고    scopus 로고
    • Phase transitions in relational learning
    • A. Giordana and L. Saitta. Phase transitions in relational learning. Machine Learning, 41:217-251, 2000.
    • (2000) Machine Learning , vol.41 , pp. 217-251
    • Giordana, A.1    Saitta, L.2
  • 8
    • 0002678783 scopus 로고    scopus 로고
    • Genetic approach to feature selection for ensemble creation
    • C. Guerra-Salcedo and D. Whitley. Genetic approach to feature selection for ensemble creation. In Proc. GECCO'99, pp. 236-243, 1999.
    • (1999) Proc. GECCO'99 , pp. 236-243
    • Guerra-Salcedo, C.1    Whitley, D.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. of Machine Learning Research, 3:1157-1182, 2003.
    • (2003) J. of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 3543109508 scopus 로고    scopus 로고
    • Abstention reduces errors; decision abstaining n-version genetic programming
    • Morgan Kaufmann
    • K. Imamura, R.B. Heckendorn, T. Soule, and J.A. Foster. Abstention reduces errors; decision abstaining n-version genetic programming. In Proc. GECCO'02, pp. 796-803. Morgan Kaufmann, 2002.
    • (2002) Proc. GECCO'02 , pp. 796-803
    • Imamura, K.1    Heckendorn, R.B.2    Soule, T.3    Foster, J.A.4
  • 13
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann
    • G.H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In Proc. ICML'94, pp. 121-129. Morgan Kaufmann, 1994.
    • (1994) Proc. ICML'94 , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 15
    • 1942514797 scopus 로고    scopus 로고
    • AUC: A better measure than accuracy in comparing learning algorithms
    • C.X. Ling, J. Hunag, and H. Zhang. AUC: a better measure than accuracy in comparing learning algorithms. In Proc. of IJCAI'03, 2003.
    • (2003) Proc. of IJCAI'03
    • Ling, C.X.1    Hunag, J.2    Zhang, H.3
  • 16
    • 14344255185 scopus 로고    scopus 로고
    • Model selection via the AUC
    • Morgan Kaufmann, to appear
    • S. Rosset. Model selection via the AUC. In Proc. ICML'04- Morgan Kaufmann, 2004, to appear.
    • (2004) Proc. ICML'04
    • Rosset, S.1
  • 17
    • 34548087763 scopus 로고    scopus 로고
    • ROC-based evolutionary learning: Application to medical data mining
    • Springer Verlag LNCS 2936
    • M. Sebag, J. Azé, and N. Lucas. ROC-based evolutionary learning: Application to medical data mining. In Artificial Evolution VI, pp. 384-396. Springer Verlag LNCS 2936, 2004.
    • (2004) Artificial Evolution , vol.6 , pp. 384-396
    • Sebag, M.1    Azé, J.2    Lucas, N.3
  • 18
    • 35248851166 scopus 로고    scopus 로고
    • A linear genetic programming approach to intrusion detection
    • Springer-Verlag
    • D. Song, M.I. Heywood, and A. Nur Zincir-Heywood. A linear genetic programming approach to intrusion detection. In Proc. GECCO'02, pp. 2325-2336. Springer-Verlag, 2003.
    • (2003) Proc. GECCO'02 , pp. 2325-2336
    • Song, D.1    Heywood, M.I.2    Nur Zincir-Heywood, A.3
  • 20
    • 85027109147 scopus 로고
    • Genetic algorithms as a tool for feature selection in machine learning
    • H. Vafaie and K. De Jong. Genetic algorithms as a tool for feature selection in machine learning. In Proc. ICTAI'92, pp. 200-204, 1992.
    • (1992) Proc. ICTAI'92 , pp. 200-204
    • Vafaie, H.1    De Jong, K.2
  • 21
    • 1942451946 scopus 로고    scopus 로고
    • Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic
    • Morgan Kaufmann
    • L. Yan, R.H. Dodier, M. Mozer, and R.H. Wolniewicz. Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In Proc. ICML'03, pp. 848-855. Morgan Kaufmann, 2003.
    • (2003) Proc. ICML'03 , pp. 848-855
    • Yan, L.1    Dodier, R.H.2    Mozer, M.3    Wolniewicz, R.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.