메뉴 건너뛰기




Volumn , Issue , 2004, Pages 703-710

Model selection via the AUC

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE PRACTICAL METHODS; MACHINE LEARNING COMMUNITIES; MODEL SELECTION; SCORING MODELS;

EID: 14344255185     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (61)

References (12)
  • 2
    • 14344262841 scopus 로고    scopus 로고
    • AUC optimization vs. error rate minimization
    • Cortes, C., & Mohri, M. (2003). AUC optimization vs. error rate minimization. NIPS-03.
    • (2003) NIPS-03
    • Cortes, C.1    Mohri, M.2
  • 3
    • 0023710206 scopus 로고
    • Comparing the area under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong, E. R., DeLong, D., & Clarke-Pearson, D. L. (1988). Comparing the area under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837:845.
    • (1988) Biometrics
    • Delong, E.R.1    Delong, D.2    Clarke-Pearson, D.L.3
  • 5
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 29:36.
    • (1982) Radiology
    • Hanley, J.A.1    McNeil, B.J.2
  • 6
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 839:843.
    • (1983) Radiology
    • Hanley, J.A.1    McNeil, B.J.2
  • 7
    • 1942452386 scopus 로고    scopus 로고
    • Improving accuracy and cost of two-class and multi-class probabilisitc classifiers using ROC curves
    • Lachiche, N., & Flasch, P. (2003). Improving accuracy and cost of two-class and multi-class probabilisitc classifiers using ROC curves. ICML-03.
    • (2003) ICML-03
    • Lachiche, N.1    Flasch, P.2
  • 9
    • 84880794162 scopus 로고    scopus 로고
    • AUC: A statistically consistent and more discriminating measure than accuracy
    • Ling, C., Huang, J., & Zhang, H. (2003). AUC: a statistically consistent and more discriminating measure than accuracy. IJCAI-03.
    • (2003) IJCAI-03
    • Ling, C.1    Huang, J.2    Zhang, H.3
  • 10
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. logistic regression: A learning-curve analysis
    • Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree induction vs. logistic regression: A learning-curve analysis. JMLR, 4, 211:255.
    • (2003) JMLR , vol.4
    • Perlich, C.1    Provost, F.2    Simonoff, J.S.3
  • 11
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distribution
    • Provost, F., & Fawcett, T. (1997). Analysis and visualization of classifier performance: Comparison under imprecise class and cost distribution. KDD-97.
    • (1997) KDD-97
    • Provost, F.1    Fawcett, T.2
  • 12
    • 0003088386 scopus 로고
    • On some convergence properties of U-statistics
    • Sen, P. (1960). On some convergence properties of U-statistics. Calcutta Stat. Assoc. Bulletin.
    • (1960) Calcutta Stat. Assoc. Bulletin
    • Sen, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.