-
1
-
-
28244436622
-
-
PYLAAG 0375-9601 10.1016/0375-9601(71)90196-4
-
M. I. Dyakonov and V. I. Perel, Phys. Lett. PYLAAG 0375-9601 10.1016/0375-9601(71)90196-4 35A, 459 (1971).
-
(1971)
Phys. Lett.
, vol.35
, pp. 459
-
-
Dyakonov, M.I.1
Perel, V.I.2
-
2
-
-
28844496034
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.166605
-
H. A. Engel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95. 166605 95, 166605 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 166605
-
-
Engel, H.A.1
-
3
-
-
26344448729
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.29.1676
-
J. N. Chazalviel and I. Solomon, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.29.1676 29, 1676 (1972).
-
(1972)
Phys. Rev. Lett.
, vol.29
, pp. 1676
-
-
Chazalviel, J.N.1
Solomon, I.2
-
5
-
-
10344244030
-
-
SCIEAS 0036-8075 10.1126/science.1105514
-
Y. K. Kato, Science SCIEAS 0036-8075 10.1126/science.1105514 306, 1910 (2004).
-
(2004)
Science
, vol.306
, pp. 1910
-
-
Kato, Y.K.1
-
10
-
-
0346800971
-
-
JTPLA2 0021-3640 10.1134/1.564828
-
A. G. Aronov and Yu. B. Lyanda-Geller, JETP Lett. JTPLA2 0021-3640 10.1134/1.564828 50, 431 (1989).
-
(1989)
JETP Lett.
, vol.50
, pp. 431
-
-
Aronov, A.G.1
Lyanda-Geller, Y.B.2
-
11
-
-
0025203409
-
-
SSCOA4 0038-1098 10.1016/0038-1098(90)90963-C
-
V. M. Edelstein, Solid State Commun. SSCOA4 0038-1098 10.1016/0038-1098(90)90963-C 73, 233 (1990).
-
(1990)
Solid State Commun.
, vol.73
, pp. 233
-
-
Edelstein, V.M.1
-
12
-
-
0342266751
-
-
SPHJAR 0038-5646
-
A. G. Aronov, Sov. Phys. JETP SPHJAR 0038-5646 73, 537 (1991).
-
(1991)
Sov. Phys. JETP
, vol.73
, pp. 537
-
-
Aronov, A.G.1
-
13
-
-
0028483917
-
-
SSCOA4 0038-1098 10.1016/0038-1098(94)90374-3
-
V. K. Kalevich, Solid State Commun. SSCOA4 0038-1098 10.1016/0038- 1098(94)90374-3 91, 559 (1994).
-
(1994)
Solid State Commun.
, vol.91
, pp. 559
-
-
Kalevich, V.K.1
-
14
-
-
0347192984
-
-
NATUAS 0028-0836 10.1038/nature02202
-
Y. K. Kato, Nature (London) NATUAS 0028-0836 10.1038/nature02202 427, 50 (2004).
-
(2004)
Nature (London)
, vol.427
, pp. 50
-
-
Kato, Y.K.1
-
15
-
-
27744526212
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.236601
-
S. A. Crooker and D. L. Smith, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.236601 94, 236601 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 236601
-
-
Crooker, S.A.1
Smith, D.L.2
-
16
-
-
20444468880
-
-
APPLAB 0003-6951 10.1063/1.1833565
-
A. Yu. Silov, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1833565 85, 5929 (2004);
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 5929
-
-
Yu. Silov, A.1
-
18
-
-
84927935471
-
-
ZZZZZZ 1745-2473
-
V. Sih, Nat. Phys. ZZZZZZ 1745-2473 1, 31 (2005).
-
(2005)
Nat. Phys.
, vol.1
, pp. 31
-
-
Sih, V.1
-
19
-
-
10344241903
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.176601
-
Y. K. Kato, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93. 176601 93, 176601 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 176601
-
-
Kato, Y.K.1
-
20
-
-
42749098760
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.226602
-
E. G. Mishchenko, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 93.226602 93, 226602 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 226602
-
-
Mishchenko, E.G.1
-
21
-
-
42749101467
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.155308
-
A. A. Burkov, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.155308 70, 155308 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 155308
-
-
Burkov, A.A.1
-
22
-
-
28844503877
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.146601
-
A. G. Mal'shukov, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 95.146601 95, 146601 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146601
-
-
Mal'Shukov, A.G.1
-
23
-
-
29144500465
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.256602
-
I. Adagideli and G. E. W. Bauer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.256602 95, 256602 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 256602
-
-
Adagideli, I.1
Bauer, G.E.W.2
-
24
-
-
0012396897
-
-
JTPLA2 0021-3640 10.1088/0022-3719/17/33/015
-
Yu. A. Bychkov and E. I. Rashba, JETP Lett. JTPLA2 0021-3640 10.1088/0022-3719/17/33/015 39, 78 (1984).
-
(1984)
JETP Lett.
, vol.39
, pp. 78
-
-
Bychkov, Y.A.1
Rashba, E.I.2
-
25
-
-
28244431695
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.245327
-
O. V. Dimitrova, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.245327 71, 245327 (2005).
-
(2005)
Phys. Rev. B
, vol.71
, pp. 245327
-
-
Dimitrova, O.V.1
-
26
-
-
18744412195
-
-
The equilibrium spin currents J iγ eq are excluded automatically from Eqs. 1 4. Indeed, for Rashba interaction [JOUSEH 0896-1107 10.1007/s10948-005-3349-8
-
The equilibrium spin currents J iγ eq are excluded automatically from Eqs. 1 4. Indeed, for Rashba interaction [E. I. Rashba, J. Supercond. JOUSEH 0896-1107 10.1007/s10948-005-3349-8 18, 137 (2005)] J iγ eq εiγz Qiγ. The spin currents in a form Jiγ = const* Qiγ do not contribute to spin polarization because of identity εβjγ Qji Qiγ =0, which is valid for any second rank tensor.
-
(2005)
J. Supercond.
, vol.18
, pp. 137
-
-
Rashba, E.I.1
-
27
-
-
33746310766
-
-
cond-mat/0512566 (unpublished), which contains the discussion of spin accumulation problem and the details omitted in this version.
-
In practice, however, this "theorem" will not work in low symmetry crystals, too. Introducing to the RHS of Eq. 1 of any change of spin not related with the linear in p spin-orbit coupling violates Eq. 4. For example, these are the Larmor precession in external magnetic field and spin relaxation not related with linear in p terms (the cubic in p terms, spin-flip during impurity scattering process, hyperfine interaction, exchange interaction with holes, etc). Thus the KKM approach resolves naturally the spin accumulation problem following from the "theorem." An expanded version of this Letter can be found in V. L. Korenev, cond-mat/0512566 (unpublished), which contains the discussion of spin accumulation problem and the details omitted in this version.
-
-
-
Korenev, V.L.1
-
28
-
-
33644531864
-
-
Another definition of spin current is proposed by PRLTAO 0031-9007 10.1103/PhysRevLett.96.076604
-
Another definition of spin current is proposed by J. Shi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.076604 96, 076604 (2006). Authors combine the precessional term and the divergence of the conventional spin current term into a single one to define the divergence of new spin current. One can see that it leads to the regrouping of terms in Eq. 1 thus leaving the final solution of Eq. 1 unchanged.
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 076604
-
-
Shi, J.1
-
29
-
-
33144481534
-
-
For example, the cancellation cannot be interpreted as nonexistence [PRLTAO 0031-9007 10.1103/PhysRevLett.96.056602
-
For example, the cancellation cannot be interpreted as nonexistence [A. Khaetskii, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.056602 96, 056602 (2006)] of the "intrinsic" spin current. It is the total spin current that is cancelled out. The intrinsic spin current exists but the KKM spin current compensates it. As a result, the nonzero spin density is developed leading to the "equilibrium" polarization ρT. We neglect the intrinsic spin current and mean spin ρT. Indeed, simple estimation can be done by formula ρT =α kdr 4T (Refs.) where the spin-orbit constant α=λ U 2.5× 10-10 eV cm, drift quasi-momentum kdr =mbE6× 104 cm-1 (at room temperature b=8000 cm2 Vs
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 056602
-
-
Khaetskii, A.1
-
30
-
-
0004130081
-
-
[Plenum, NY
-
[M. Shur, GaAs Devices and Circuits (Plenum, NY, 1987)]). It gives ρT 1.5× 10-4 that is 10 times less than the estimation ρ2× 10-3 given by Eq. 10.
-
(1987)
GaAs Devices and Circuits
-
-
Shur, M.1
|