메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 700-705

Recurrent neural networks training with stable risk-sensitive Kalman filter algorithm

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; KALMAN FILTERING; LEARNING ALGORITHMS; NONLINEAR CONTROL SYSTEMS; STABILITY; STATE SPACE METHODS;

EID: 33745965821     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2005.1555937     Document Type: Conference Paper
Times cited : (4)

References (17)
  • 3
    • 0032626127 scopus 로고    scopus 로고
    • Finite-dimensional risk-sensitive filters and smooters for discrete-time nonlinear systems
    • S.Dey and J.B. Moore, Finite-Dimensional Risk-Sensitive Filters and Smooters for Discrete-Time Nonlinear Systems, IEEE Trans. Automatic Control, Vol.44, No.6, 1234-1239, 1999.
    • (1999) IEEE Trans. Automatic Control , vol.44 , Issue.6 , pp. 1234-1239
    • Dey, S.1    Moore, J.B.2
  • 4
    • 0003413187 scopus 로고    scopus 로고
    • Macmillan Pub.Co., Second edition, Englewood cliffs, NJ 17458
    • S. Haykin, Neuronal Networks, Macmillan Pub.Co., Second edition, Englewood cliffs, NJ 17458, 1999.
    • (1999) Neuronal Networks
    • Haykin, S.1
  • 5
    • 0026841022 scopus 로고
    • A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter
    • IEEE April
    • Y. Iiguni, H. sakai, Member, IEEE and Higekatsu Tokumaru, A Real-Time Learning Algorithm for a Multilayered Neural Network Based on the Extended Kalman Filter, IEEE Transactions on Signal Processing, Vol.40, No.4, 959-966, April 1992.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.4 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 7
    • 0036858524 scopus 로고
    • Existence and uniqueness of risk-sensitive estimates
    • J.T.Lo and T.Wanner, Existence and Uniqueness of Risk-Sensitive Estimates, IEEE Trans. Automatic control, vol.47, No.11, 1945-1
    • (1945) IEEE Trans. Automatic Control , vol.47 , Issue.11
    • Lo, J.T.1    Wanner, T.2
  • 8
    • 0025399567 scopus 로고
    • Identification and control of Dynamical Systems using Neural Netwoks
    • K.S.Narendra and K.Parthasarathy, Identification and control of Dynamical Systems using Neural Netwoks, IEEE Trans. Neural Networks, Vol.1, No.1, 4-27, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 9
    • 0035505570 scopus 로고    scopus 로고
    • An algorithm approach to adaptive state filtering using recurrent neural network
    • A. G. Parlos, S. K. Menon and A. F. Atiya, An Algorithm Approach to Adaptive State Filtering Using Recurrent Neural Network, IEEE Transactions on Neural Networks, vol.12, No.6, 1411-1432, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1411-1432
    • Parlos, A.G.1    Menon, S.K.2    Atiya, A.F.3
  • 10
    • 0033171387 scopus 로고    scopus 로고
    • The extended kalman filter as an exponential observer for nonlinear systems
    • August
    • K. Reif and R. Unbehauen, The Extended Kalman Filter as an Exponential Observer for Nonlinear Systems, IEEE Transactions on Signal Processing, vol.47, No.8, 2324-2328, August 1999.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.8 , pp. 2324-2328
    • Reif, K.1    Unbehauen, R.2
  • 12
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • March
    • G. V. Puskorius and L. A. Feldkamp, Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks, IEEE Transactions on Neural Networks, Vol.5, No.2, 279-297, March 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 13
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feed forward neural networks
    • S. Shah F. Palmeieri and M. Datum, Optimal filtering algorithms for fast learning in feed forward neural networks, Neural Networks, Vol.5, 779-787, 1992.
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmeieri, F.2    Datum, M.3
  • 14
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with the extended Kalman algorithm
    • S. Singhal and L. Wu, Training multilayer perceptrons with the extended Kalman algorithm, Advances in Neural inform. Processing Syst. 1, 133-140, 1989.
    • (1989) Advances in Neural Inform. Processing Syst. , vol.1 , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 16
    • 0036697709 scopus 로고    scopus 로고
    • Use of periodic and monotonic activation functions in multilayer feedforward neural networks trained by extended Kalman filter algorithm
    • August
    • K. W. Wong, C. S. Leung and S. J. Chang., Use of periodic and monotonic activation functions in multilayer feedforward neural networks trained by extended Kalman filter algorithm, IEE Image Signal Process, Vol.149, 217-224, August 2002.
    • (2002) IEE Image Signal Process , vol.149 , pp. 217-224
    • Wong, K.W.1    Leung, C.S.2    Chang, S.J.3
  • 17
    • 0242523780 scopus 로고    scopus 로고
    • Nonlinear system identification using descrete-time recurrent neural networks with stable learning algorithms
    • 949, 2002
    • W.Yu, Nonlinear system identification using descrete-time recurrent neural networks with stable learning algorithms, Information Sciences, Vol.158, No.1, 131-147, 2004.949, 2002.
    • (2004) Information Sciences , vol.158 , Issue.1 , pp. 131-147
    • Yu, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.