메뉴 건너뛰기




Volumn 17, Issue 6, 2003, Pages 509-521

A new approach to real-time training of dynamic neural networks

Author keywords

Dynamic systems; Input output modelling; Kalman filter; Real time training

Indexed keywords

KALMAN FILTERING; NEURAL NETWORKS; RANDOM PROCESSES; TIME VARYING SYSTEMS; VECTORS;

EID: 0042364961     PISSN: 08906327     EISSN: None     Source Type: Journal    
DOI: 10.1002/acs.756     Document Type: Article
Times cited : (14)

References (9)
  • 2
    • 0008011457 scopus 로고
    • Neural networks, system identification, and control in the chemical process industries
    • White, Sofge (eds). Van Nostrand Reinhold: New York
    • Werbos PJ, McAvoy T, Su T. Neural networks, system identification, and control in the chemical process industries. In Handbook of Intelligent Control, White, Sofge (eds). Van Nostrand Reinhold: New York, 1992; 283-356.
    • (1992) Handbook of Intelligent Control , pp. 283-356
    • Werbos, P.J.1    McAvoy, T.2    Su, T.3
  • 4
    • 0034548301 scopus 로고    scopus 로고
    • On approximate NN realization of an unknown dynamic system from its input-output history
    • Chicago, US; Paper N WM17-1
    • Hovakimyan N, Lee H, Calise AJ. On approximate NN realization of an unknown dynamic system from its input-output history. Proceedings of the American Control Conference, Chicago, US, 2000; Paper N WM17-1.
    • (2000) Proceedings of the American Control Conference
    • Hovakimyan, N.1    Lee, H.2    Calise, A.J.3
  • 5
    • 0026841022 scopus 로고
    • A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter
    • Iiguni Y, Sakai H, Tokumaru H. A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter. IEEE Transactions on Signal Processing 1992; 40(4):959-966.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.4 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 6
    • 0035273079 scopus 로고    scopus 로고
    • Regularization networks: Fast weight calculation via Kalman filtering
    • Nicolao GD, Ferrari-Trecate G. Regularization networks: fast weight calculation via Kalman filtering. IEEE Transactions on Neural Networks 2001; 12(2):228-235.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 228-235
    • Nicolao, G.D.1    Ferrari-Trecate, G.2
  • 7
    • 0032777345 scopus 로고    scopus 로고
    • On the Kalman filtering method in neural network training and pruning
    • Sum J, Leung C, Young GH, Kan W. On the Kalman filtering method in neural network training and pruning. IEEE Transactions on Neural Networks 1999; 10(1):161-166.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.1 , pp. 161-166
    • Sum, J.1    Leung, C.2    Young, G.H.3    Kan, W.4
  • 8
    • 0032681148 scopus 로고    scopus 로고
    • A fast U-D factorization-based learning method with applications to nonlinear system modeling and identification
    • Zhang Y, Li XR, A fast U-D factorization-based learning method with applications to nonlinear system modeling and identification. IEEE Transactions on Neural Networks 1999; 10(4):930-938.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.4 , pp. 930-938
    • Zhang, Y.1    Li, X.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.