메뉴 건너뛰기




Volumn 3, Issue 3, 2006, Pages 384-395

Utility of Correlation Measures in Analysis of Gene Expression

Author keywords

correlation; Gene expression; genetic networks; microarrays

Indexed keywords

ARTICLE; CORRELATION ANALYSIS; DATA ANALYSIS; GENE EXPRESSION; GENOMICS; METHODOLOGY; MICROARRAY ANALYSIS; NEUROLOGIC DISEASE; STATISTICAL ANALYSIS;

EID: 33745413936     PISSN: 15455343     EISSN: 15455351     Source Type: Journal    
DOI: 10.1016/j.nurx.2006.05.037     Document Type: Article
Times cited : (29)

References (52)
  • 1
    • 8844258953 scopus 로고    scopus 로고
    • Comment on Resampling-based multiple testing for DNA microarray data analysis by Ge, Dudoit, and Speed
    • Storey J.D. Comment on Resampling-based multiple testing for DNA microarray data analysis by Ge, Dudoit, and Speed. Test 12 (2003) 1-77
    • (2003) Test , vol.12 , pp. 1-77
    • Storey, J.D.1
  • 2
    • 25444485444 scopus 로고    scopus 로고
    • The effects of normalization on the correlation structure of microarray data
    • Qiu X., Brooks A., Klebanov L., and Yakovlev A. The effects of normalization on the correlation structure of microarray data. BMC Bioinformatics 6 (2005) 120
    • (2005) BMC Bioinformatics , vol.6 , pp. 120
    • Qiu, X.1    Brooks, A.2    Klebanov, L.3    Yakovlev, A.4
  • 3
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., and Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 7 (2000) 601-620
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 5
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S., Shaffer J.P., and Boldrick J.C. Multiple hypothesis testing in microarray experiments. Stat Sci 18 (2003) 71-103
    • (2003) Stat Sci , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 12
    • 33745375301 scopus 로고    scopus 로고
    • The cognitive phenotype of Down syndrome. insights from intracellular network analysis
    • Ma'ayan A., Gardiner K., and Iyengar R. The cognitive phenotype of Down syndrome. insights from intracellular network analysis. NeuroRx 3 (2006) 394-403
    • (2006) NeuroRx , vol.3 , pp. 394-403
    • Ma'ayan, A.1    Gardiner, K.2    Iyengar, R.3
  • 13
    • 33745416559 scopus 로고    scopus 로고
    • Single cell gene expression profiling in Alzheimer's disease
    • Ginsberg S.D., Che S., Counts S.E., and Mufson E.J. Single cell gene expression profiling in Alzheimer's disease. NeuroRx 3 (2006) 302-317
    • (2006) NeuroRx , vol.3 , pp. 302-317
    • Ginsberg, S.D.1    Che, S.2    Counts, S.E.3    Mufson, E.J.4
  • 14
    • 33745354666 scopus 로고    scopus 로고
    • Microarrays in Parkinson's disease. a systematic approach
    • Miller R.M., and Federoff H.J. Microarrays in Parkinson's disease. a systematic approach. NeuroRx 3 (2006) 318-325
    • (2006) NeuroRx , vol.3 , pp. 318-325
    • Miller, R.M.1    Federoff, H.J.2
  • 15
    • 33646358230 scopus 로고    scopus 로고
    • A new type of stochastic dependence revealed in gene expression data
    • Klebanov L., Jordan C., and Yakovlev A. A new type of stochastic dependence revealed in gene expression data. Stat Appl Genet Mol Biol 5 (2006) 7
    • (2006) Stat Appl Genet Mol Biol , vol.5 , pp. 7
    • Klebanov, L.1    Jordan, C.2    Yakovlev, A.3
  • 16
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte A.J., Tamayo P., Slonim D., and Golub T.R. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97 (2000) 12182-12186
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4
  • 17
    • 28244483283 scopus 로고    scopus 로고
    • Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes
    • Qiu X., Klebanov L., and Yakovlev A.Y. Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes. Stat Appl Genet Mol Biol 4 (2005) 34
    • (2005) Stat Appl Genet Mol Biol , vol.4 , pp. 34
    • Qiu, X.1    Klebanov, L.2    Yakovlev, A.Y.3
  • 18
    • 33745363885 scopus 로고    scopus 로고
    • Qiu X, Yakovlev A. Instability of false discovery rate estimation. Technical Report 06/03. Available at: http://www.urmc.rochester.edu/smd/biostat/people/faculty/andrei.htm. Accessed: 2006.
  • 22
    • 25144474547 scopus 로고    scopus 로고
    • 2 multivariate profiling for detecting differential expression in microarrays
    • 2 multivariate profiling for detecting differential expression in microarrays. Bioinformatics 21 (2005) 3105-3113
    • (2005) Bioinformatics , vol.21 , pp. 3105-3113
    • Lu, Y.1    Liu, P.-Y.2    Deng, H.-W.3
  • 23
    • 34548058037 scopus 로고    scopus 로고
    • Searching for differentially expressed gene combinations
    • Dettling M., Gabrielson E., and Parmigiani G. Searching for differentially expressed gene combinations. Genome Biol 6 (2005) R88
    • (2005) Genome Biol , vol.6
    • Dettling, M.1    Gabrielson, E.2    Parmigiani, G.3
  • 24
    • 33745378634 scopus 로고    scopus 로고
    • Efron B. Correlation and large-scale simultaneous significance testing. Available at: http://www-stat.stanford.edu/∼brad/papers/. Accessed: 2006.
  • 26
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies. statistical methods and evidence from repetitive DNA hybridizations
    • Lee M.-L., Kuo F.C., Whitmore G.A., and Sklar J. Importance of replication in microarray gene expression studies. statistical methods and evidence from repetitive DNA hybridizations. Proc Natl Acad Sci USA 97 (2000) 9834-9839
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 9834-9839
    • Lee, M.-L.1    Kuo, F.C.2    Whitmore, G.A.3    Sklar, J.4
  • 27
    • 0141626917 scopus 로고    scopus 로고
    • The effect of replication on gene expression microarray experiments
    • Pavlidis P., Li Q., and Noble W.S. The effect of replication on gene expression microarray experiments. Bioinformatics 19 (2003) 1620-1627
    • (2003) Bioinformatics , vol.19 , pp. 1620-1627
    • Pavlidis, P.1    Li, Q.2    Noble, W.S.3
  • 28
    • 33645024314 scopus 로고    scopus 로고
    • Assessing stability of gene selection in microarray data analysis
    • Qiu X., Xiao Y., Gordon A., and Yakovlev A. Assessing stability of gene selection in microarray data analysis. BMC Bioinformatics 7 (2006) 50
    • (2006) BMC Bioinformatics , vol.7 , pp. 50
    • Qiu, X.1    Xiao, Y.2    Gordon, A.3    Yakovlev, A.4
  • 30
    • 33745338889 scopus 로고    scopus 로고
    • Klebanov L, Gordon A, Xiao Y, Land H, Yakovlev A. A permutation test motivated by microarray data analysis. Comp Stat Data Anal (in press).
  • 31
    • 33745357472 scopus 로고    scopus 로고
    • 1-version of the Cramer-von Mises test for two-sample comparisons in microarray data analysis. Technical Report 06/03. Available at: http://www.urmc.rochester.edu/smd/biostat/people/faculty/andrei.htm. Accessed: 2006.
  • 33
    • 0002095306 scopus 로고
    • Equivalence and synthesis of causal models
    • Verma T.S., and Pearl J. Equivalence and synthesis of causal models. Proc UAI 6 (1990) 255-268
    • (1990) Proc UAI , vol.6 , pp. 255-268
    • Verma, T.S.1    Pearl, J.2
  • 34
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A., Bing N., Hoeschele I., and Mendes P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 (2004) 3565-3574
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 35
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J., and Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 (2005) 754-764
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 36
    • 30044444291 scopus 로고    scopus 로고
    • Low-order conditional independence graphs for inferring genetic networks
    • Article 1 http://www.bepress.com/sagmb/vol5/iss1/art1. Accessed: 2006.
    • Wille A., and Bühlmann P. Low-order conditional independence graphs for inferring genetic networks. Stat Appl Genet Mol Biol 5 1 (2006). http://www.bepress.com/sagmb/vol5/iss1/art1 Article 1 http://www.bepress.com/sagmb/vol5/iss1/art1. Accessed: 2006.
    • (2006) Stat Appl Genet Mol Biol , vol.5 , Issue.1
    • Wille, A.1    Bühlmann, P.2
  • 37
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks. functional genomic clustering using pairwise entropy measurements
    • Butte A.J., and Kohane I.S. Mutual information relevance networks. functional genomic clustering using pairwise entropy measurements. Pacific Symp Biocomput (2000) 418-429
    • (2000) Pacific Symp Biocomput , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 38
    • 0037715339 scopus 로고    scopus 로고
    • A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays
    • Chu T., Glymour C., Scheines R., and Spirtes P. A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays. Bioinformatics 19 (2003) 1147-1152
    • (2003) Bioinformatics , vol.19 , pp. 1147-1152
    • Chu, T.1    Glymour, C.2    Scheines, R.3    Spirtes, P.4
  • 39
    • 33745375673 scopus 로고    scopus 로고
    • Single cell resolution in regulation of gene expression
    • Bahcall O.G. Single cell resolution in regulation of gene expression. Mol Syst Biol 1 (2005) 41000
    • (2005) Mol Syst Biol , vol.1 , pp. 41000
    • Bahcall, O.G.1
  • 40
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • Zhou X., Kao M.-C.J., and Wong W.H. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99 (2002) 12783-12788
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12783-12788
    • Zhou, X.1    Kao, M.-C.J.2    Wong, W.H.3
  • 41
    • 0004283231 scopus 로고    scopus 로고
    • Jordan M.I. (Ed), The MIT Press, Cambridge, MA
    • In: Jordan M.I. (Ed). Learning in graphical models (1998), The MIT Press, Cambridge, MA
    • (1998) Learning in graphical models
  • 42
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D., and York J. Bayesian graphical models for discrete data. Int Stat Rev 63 (1995) 215-232
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 44
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about Bayesian network structure. a Bayesian approach to structure discovery in Bayesian networks
    • Friedman N., and Koller D. Being Bayesian about Bayesian network structure. a Bayesian approach to structure discovery in Bayesian networks. Machine Learn 50 (2003) 95-125
    • (2003) Machine Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 45
    • 29144531645 scopus 로고    scopus 로고
    • Model averaging for prediction with discrete Bayesian networks
    • Dash D., and Cooper G.F. Model averaging for prediction with discrete Bayesian networks. J Machine Learn Res 5 (2004) 1177-1203
    • (2004) J Machine Learn Res , vol.5 , pp. 1177-1203
    • Dash, D.1    Cooper, G.F.2
  • 48
    • 0842288337 scopus 로고    scopus 로고
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303:799-805.
  • 50
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink A.J. Reverse engineering gene regulatory networks. Nat Biotechnol 23 (2005) 554-555
    • (2005) Nat Biotechnol , vol.23 , pp. 554-555
    • Hartemink, A.J.1
  • 51
    • 34249761849 scopus 로고
    • Learning Bayesian networks. the combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks. the combination of knowledge and statistical data. Machine Learn 20 (1995) 197-243
    • (1995) Machine Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 52
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • Jordon M.I. (Ed), The MIT Press, Cambridge, MA
    • Friedman N., and Goldszmidt M. Learning Bayesian networks with local structure. In: Jordon M.I. (Ed). Learning in graphical models (1998), The MIT Press, Cambridge, MA 412-459
    • (1998) Learning in graphical models , pp. 412-459
    • Friedman, N.1    Goldszmidt, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.