메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages

Using a Bayesian posterior density in the design of perturbation experiments for network reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTICAL RESOLVING POWER; PERTURBATION TECHNIQUES; UNCERTAIN SYSTEMS;

EID: 33847187387     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/cibcb.2005.1594920     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 0345983657 scopus 로고    scopus 로고
    • From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
    • I. Shmulevich, E. R. Dougherty, and W. Zhang, "From Boolean to probabilistic Boolean networks as models of genetic regulatory networks", in Proceedings of the IEEE, vol. 90, pp. 1778-1792, 2002.
    • (2002) Proceedings of the IEEE , vol.90 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 2
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • I. Shmulevich, E. R. Dougherty, and W. Zhang, "Gene perturbation and intervention in probabilistic Boolean networks", Bioinformatics, vol. 18, pp. 1319-1331, 2003.
    • (2003) Bioinformatics , vol.18 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 3
  • 4
    • 0000660076 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • T. E. Ideker, V. Thorsson, and R. Karp, "Discovery of regulatory interactions through perturbation: inference and experimental design", in Pacific Symposium on Biocomputing, vol. 5, pp. 302-313, 2000.
    • (2000) Pacific Symposium on Biocomputing , vol.5 , pp. 302-313
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.3
  • 6
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller, "Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks", Machine Learning, vol. 50, pp. 95-125, 2003.
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 7
    • 10244239406 scopus 로고    scopus 로고
    • A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks
    • X. Zhou, X. Wang, R. Pal, I. Ivanov, M. Bittner, and E. Dougherty, "A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks", Bioinformatics, vol. 20, pp. 2918-2927, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2918-2927
    • Zhou, X.1    Wang, X.2    Pal, R.3    Ivanov, I.4    Bittner, M.5    Dougherty, E.6
  • 10
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • M. I. Jordon, editor, MIT press, Cambridge, Massachusetts
    • N. Friedman and M. Goldszmidt, "Learning Bayesian networks with local structure", in Learning in Graphical Models, M. I. Jordon, editor, MIT press, Cambridge, Massachusetts, 1998.
    • (1998) Learning in Graphical Models
    • Friedman, N.1    Goldszmidt, M.2
  • 11
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model", Annals of Statistics, vol. 6, pp. 461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings, "Monte Carlo sampling methods using Markov chains and their applications", Biometrika, vol. 57, pp. 97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • D. Madigan and J. York, "Bayesian graphical models for discrete data", International Statistical Review, vol. 63, pp. 215-232, 1995.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 14
    • 0038620466 scopus 로고    scopus 로고
    • A simulated annealing algorithm for maximum likelihood pedigree reconstruction
    • A. Almudevar, "A simulated annealing algorithm for maximum likelihood pedigree reconstruction", Theoretical Population Biology, vol. 63, pp. 63-75, 2003.
    • (2003) Theoretical Population Biology , vol.63 , pp. 63-75
    • Almudevar, A.1
  • 15
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occams Window
    • D. Madigan and E. Raftery, "Model selection and accounting for model uncertainty in graphical models using Occams Window", Journal of the American Statistical Association, vol. 89, pp. 1335-1346, 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1335-1346
    • Madigan, D.1    Raftery, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.