메뉴 건너뛰기




Volumn 263, Issue 6, 2006, Pages 541-547

An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma

Author keywords

Artificial intelligence; Chaos; Complex systems modeling; Laryngeal carcinoma

Indexed keywords

ADOLESCENT; ADULT; AGED; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CANCER SURVIVAL; CHILD; FEMALE; HUMAN; HUMAN CELL; HUMAN TISSUE; KAPLAN MEIER METHOD; LARYNX CARCINOMA; MAJOR CLINICAL STUDY; MALE; MATHEMATICAL MODEL; MULTIVARIATE ANALYSIS OF COVARIANCE; PRIORITY JOURNAL; PROPORTIONAL HAZARDS MODEL; SQUAMOUS CELL CARCINOMA; SURVIVAL RATE; TRAINING;

EID: 33745108811     PISSN: 09374477     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00405-006-0021-2     Document Type: Article
Times cited : (14)

References (30)
  • 3
    • 0000336139 scopus 로고    scopus 로고
    • Regression models and life tables
    • Cox DR (1999) Regression models and life tables. J R Stat Soc B 34:187-220
    • (1999) J R Stat Soc B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 4
    • 0043284252 scopus 로고    scopus 로고
    • Advanced statistical methods for the definition of new staging models
    • Kates R, Schmitt M, Harbeck N (2003) Advanced statistical methods for the definition of new staging models. Recent Results Cancer Res 162:101-113
    • (2003) Recent Results Cancer Res , vol.162 , pp. 101-113
    • Kates, R.1    Schmitt, M.2    Harbeck, N.3
  • 5
    • 0036071419 scopus 로고    scopus 로고
    • Forecasting the performance status of head and neck cancer patient treatment by an interval arithmetic pruned perceptro
    • Drago GP, Setti E, Licitra L, Liberati D (2002) Forecasting the performance status of head and neck cancer patient treatment by an interval arithmetic pruned perceptro. IEEE Trans Biomed Eng 49:782-787
    • (2002) IEEE Trans Biomed Eng , vol.49 , pp. 782-787
    • Drago, G.P.1    Setti, E.2    Licitra, L.3    Liberati, D.4
  • 6
    • 0037302384 scopus 로고    scopus 로고
    • Neural networks in the prediction of survival in patients with colorectal cancer
    • Grumett S, Snow P, Kerr D (2003) Neural networks in the prediction of survival in patients with colorectal cancer. Clin Colorectal Cancer 2:239-234
    • (2003) Clin Colorectal Cancer , vol.2 , pp. 239-1234
    • Grumett, S.1    Snow, P.2    Kerr, D.3
  • 8
    • 0035871573 scopus 로고    scopus 로고
    • Neural network and regression predictions of 5 year survival after colon carcinoma treatment
    • Snow PB, Kerr DJ, Brandt JM, Rodvold DM (2001) Neural network and regression predictions of 5 year survival after colon carcinoma treatment. Cancer 91(8 Suppl):1673-1678
    • (2001) Cancer , vol.91 , Issue.8 SUPPL. , pp. 1673-1678
    • Snow, P.B.1    Kerr, D.J.2    Brandt, J.M.3    Rodvold, D.M.4
  • 9
    • 0031813690 scopus 로고    scopus 로고
    • Artificial neural networks and logistic regression as tools for prediction of survival in patients with Stages I and II non-smoker cell lung cancer
    • Marchevsky AM, Patel S, Wiley KJ, Stephenson MA, Gondo M, Brov RW et al (1998) Artificial neural networks and logistic regression as tools for prediction of survival in patients with Stages I and II non-smoker cell lung cancer. Mod Pathol 11:618-625
    • (1998) Mod Pathol , vol.11 , pp. 618-625
    • Marchevsky, A.M.1    Patel, S.2    Wiley, K.J.3    Stephenson, M.A.4    Gondo, M.5    Brov, R.W.6
  • 10
    • 0036091951 scopus 로고    scopus 로고
    • Artificial neural networks for diagnosis and prognosis in prostate cancer
    • Schwarzer G, Schumacher M (2002) Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 20:89-95
    • (2002) Semin Urol Oncol , vol.20 , pp. 89-95
    • Schwarzer, G.1    Schumacher, M.2
  • 11
    • 0033375308 scopus 로고    scopus 로고
    • A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
    • De Laurentiis M, De Placido S, Bianco AR, Clark GM, Ravdin PM (1999) A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res 5:4133-4139
    • (1999) Clin Cancer Res , vol.5 , pp. 4133-4139
    • De Laurentiis, M.1    De Placido, S.2    Bianco, A.R.3    Clark, G.M.4    Ravdin, P.M.5
  • 13
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • Bottaci L, Drew PJ, Hartley JE, Hadfield MB, Farouk R, Lee PW et al (1997) Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350:469-472
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1    Drew, P.J.2    Hartley, J.E.3    Hadfield, M.B.4    Farouk, R.5    Lee, P.W.6
  • 14
    • 0036808137 scopus 로고    scopus 로고
    • Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone
    • Ochi T, Murase K, Fujii, Kawamura M, Ikezoe J (2002) Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone. Int J Clin Oncol 7:294-300
    • (2002) Int J Clin Oncol , vol.7 , pp. 294-300
    • Ochi, T.1    Murase, K.2    Fujii3    Kawamura, M.4    Ikezoe, J.5
  • 16
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M (2000) On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 19:541-561
    • (2000) Stat Med , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 21
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, Marubini E (1998) Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 17:1169-1186
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 22
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to progress after surgery for breast cancer
    • Lisboa PJ, Wong H, Harris P, Swindell R (2003) A Bayesian neural network approach for modelling censored data with an application to progress after surgery for breast cancer. Artif Intell Med 28:1-25
    • (2003) Artif Intell Med , vol.28 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 23
    • 33745089652 scopus 로고    scopus 로고
    • SAS Institute Inc., Carey
    • http://www.sas.com/ts (2005) SAS Institute Inc., Carey
    • (2005)
  • 25
    • 80052047021 scopus 로고    scopus 로고
    • Computer-based clinical decision aids. A review of methods and assessment of systems
    • Reisman Y (1996) Computer-based clinical decision aids. A review of methods and assessment of systems. Med Inform 21:179-197
    • (1996) Med Inform , vol.21 , pp. 179-197
    • Reisman, Y.1
  • 27
    • 0032076928 scopus 로고    scopus 로고
    • Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy advanced carcinoma of the head and neck
    • Bryce TJ, Dewhirst MW, Floyd Ce Jr, Hars V, Brizel DM (1998) Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 41:339-345
    • (1998) Int J Radiat Oncol Biol Phys , vol.41 , pp. 339-345
    • Bryce, T.J.1    Dewhirst, M.W.2    Floyd Jr., Ce.3    Hars, V.4    Brizel, D.M.5
  • 29
    • 0032467834 scopus 로고    scopus 로고
    • Flexible modelling in survival analysis. Structuring biological complexity from the information provided by tumour markers
    • Biganzoli E, Boracchi P, Diadone MG, Gion M, Marubini E (1998) Flexible modelling in survival analysis. Structuring biological complexity from the information provided by tumour markers. Int J Biol Markers 13:107-123
    • (1998) Int J Biol Markers , vol.13 , pp. 107-123
    • Biganzoli, E.1    Boracchi, P.2    Diadone, M.G.3    Gion, M.4    Marubini, E.5
  • 30
    • 0028019225 scopus 로고
    • Survival analysis of censored data: Neural network analysis detection of complex interactions between variables
    • De Laurentiis M, Ravdin PM (1994) Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Res Treat 32:113-118
    • (1994) Breast Cancer Res Treat , vol.32 , pp. 113-118
    • De Laurentiis, M.1    Ravdin, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.