-
1
-
-
0842309885
-
Thermoelectricity in semiconductor nanostructures
-
A. Majumdar, "Thermoelectricity in Semiconductor Nanostructures," Science, vol. 303, pp. 777-778, 2004.
-
(2004)
Science
, vol.303
, pp. 777-778
-
-
Majumdar, A.1
-
2
-
-
0033618637
-
Thermoelectric cooling and power generation
-
F. DiSalvo, "Thermoelectric cooling and power generation," Science, vol. 285, pp. 703-706, 1999.
-
(1999)
Science
, vol.285
, pp. 703-706
-
-
DiSalvo, F.1
-
3
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, pp. 597-602, 2001.
-
(2001)
Nature
, vol.413
, pp. 597-602
-
-
Venkatasubramanian, R.1
Silvola, E.2
Colpitts, T.3
O'Quinn, B.4
-
4
-
-
0037183949
-
Quantum dot superlattice thermoelectric materials and devices
-
T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum dot superlattice thermoelectric materials and devices," Science, vol. 297, pp. 2229-2232, 2002.
-
(2002)
Science
, vol.297
, pp. 2229-2232
-
-
Harman, T.C.1
Taylor, P.J.2
Walsh, M.P.3
LaForge, B.E.4
-
5
-
-
0842331448
-
Cubic AgPb(m)SbTe(2+m) bulk thermoelectric materials with high figure of merit
-
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic AgPb(m)SbTe(2+m) bulk thermoelectric materials with high figure of merit," Science, vol. 303, pp. 818-821, 2004.
-
(2004)
Science
, vol.303
, pp. 818-821
-
-
Hsu, K.F.1
Loo, S.2
Guo, F.3
Chen, W.4
Dyck, J.S.5
Uher, C.6
Hogan, T.7
Polychroniadis, E.K.8
Kanatzidis, M.G.9
-
6
-
-
0001173915
-
Effect of quantum-well structures on the thermoelectric figure of merit
-
L. D. Hicks and M. S. Dresselhaus, "Effect of Quantum-well structures on the Thermoelectric figure of Merit," Phys. Rev. B, vol. 47, pp. 12727, 1993.
-
(1993)
Phys. Rev. B
, vol.47
, pp. 12727
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
7
-
-
35949006143
-
Thermoelectric figure of merit of a one-dimensional conductor
-
L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-dimensional conductor," Phys. Rev. B, vol. 47, pp. 16631, 1993.
-
(1993)
Phys. Rev. B
, vol.47
, pp. 16631
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
8
-
-
0000181641
-
Thermoelectric properties of pressure-sintered Si0.8ge0.2 thermoelectric alloys
-
C. B. Vining, W. Laskow, J. O. Hanson, R. R. Vanderbeck, and P. D. Gorsuch, "Thermoelectric Properties Of Pressure-Sintered Si0.8ge0.2 Thermoelectric Alloys," Journal Of Applied Physics, vol. 69, pp. 4333-4340, 1991.
-
(1991)
Journal of Applied Physics
, vol.69
, pp. 4333-4340
-
-
Vining, C.B.1
Laskow, W.2
Hanson, J.O.3
Vanderbeck, R.R.4
Gorsuch, P.D.5
-
9
-
-
0000669214
-
Thermal conductivity of Si-Ge superlattices
-
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, "Thermal conductivity of Si-Ge superlattices," Appl. Phys. Lett., vol. 70, pp. 2957-2959, 1997.
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 2957-2959
-
-
Lee, S.M.1
Cahill, D.G.2
Venkatasubramanian, R.3
-
10
-
-
0034273743
-
Thermal conductivity of symmetrically strained Si/Ge superlattices
-
T. Borca-Tasciuc, W. L. Liu, J. L. Liu, T. F. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M. S. Dresselhaus, "Thermal conductivity of symmetrically strained Si/Ge superlattices," Superlattices Microstruct, vol. 28, pp. 199-206, 2000.
-
(2000)
Superlattices Microstruct
, vol.28
, pp. 199-206
-
-
Borca-Tasciuc, T.1
Liu, W.L.2
Liu, J.L.3
Zeng, T.F.4
Song, D.W.5
Moore, C.D.6
Chen, G.7
Wang, K.L.8
Goorsky, M.S.9
Radetic, T.10
Gronsky, R.11
Koga, T.12
Dresselhaus, M.S.13
-
11
-
-
33845642890
-
Heat transport in superlattices and nanowire arrays
-
Berkeley: University of California
-
S. Huxtable, "Heat transport in superlattices and nanowire arrays," in Department of Mechanical Engineering. Berkeley: University of California, 2002.
-
(2002)
Department of Mechanical Engineering
-
-
Huxtable, S.1
-
12
-
-
79958187283
-
Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
-
S. Huxtable, A. Abramson, C. L. Tien, and A. Majumdar, "Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices," Appl. Phys. Letts., vol. 80, pp. 1737-1739, 2002.
-
(2002)
Appl. Phys. Letts.
, vol.80
, pp. 1737-1739
-
-
Huxtable, S.1
Abramson, A.2
Tien, C.L.3
Majumdar, A.4
-
13
-
-
0000881998
-
Thermal conductivity measurements of GaAs/AlAs superlattices using picosecond optical pump-and-probe technique
-
W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. Katzer, "Thermal conductivity measurements of GaAs/AlAs superlattices using picosecond optical pump-and-probe technique," Phys. Rev. B, vol. 59, pp. 8105-8113, 1999.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8105-8113
-
-
Capinski, W.S.1
Maris, H.J.2
Ruf, T.3
Cardona, M.4
Ploog, K.5
Katzer, D.6
-
14
-
-
0000953459
-
Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
-
R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Phys. Rev. B, vol. 61, pp. 3091-3097, 2000.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 3091-3097
-
-
Venkatasubramanian, R.1
-
15
-
-
0001248353
-
Minimum thermal conductivity of superlattices
-
M. V. Simkin and G. D. Mahan, "Minimum thermal conductivity of superlattices," Phys. Rev. Lett., vol. 84, pp. 927-930, 2000.
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 927-930
-
-
Simkin, M.V.1
Mahan, G.D.2
-
16
-
-
0242367470
-
Thermal conductivity of Si/SiGe superlattice nanowires
-
D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, "Thermal conductivity of Si/SiGe superlattice nanowires," Appl. Phys. Lett., vol. 83, pp. 3186-3188, 2003.
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 3186-3188
-
-
Li, D.1
Wu, Y.2
Fan, R.3
Yang, P.4
Majumdar, A.5
-
17
-
-
0035911463
-
Electronic structure and conduction in a metal-semiconductor digital composite: ErAs: InGaAs
-
D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, "Electronic structure and conduction in a metal-semiconductor digital composite: ErAs: InGaAs," Appl. Phys. Lett., vol. 78, pp. 1703-1705, 2001.
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 1703-1705
-
-
Driscoll, D.C.1
Hanson, M.2
Kadow, C.3
Gossard, A.C.4
-
18
-
-
33747410286
-
-
J. M. Zide, D. O. Klenov, S. Stemmer, A. C. Gossard, G. Zeng, and J. E. Bowers, unpublished
-
J. M. Zide, D. O. Klenov, S. Stemmer, A. C. Gossard, G. Zeng, and J. E. Bowers, unpublished.
-
-
-
-
19
-
-
36549099049
-
Thermal conductivity measurement from 30 K to 750K: The 3-omega method
-
D. G. Cahill, "Thermal conductivity measurement from 30 K to 750K: The 3-omega method," Rev. Sci. Instrum., vol. 61, pp. 802-808, 1990.
-
(1990)
Rev. Sci. Instrum.
, vol.61
, pp. 802-808
-
-
Cahill, D.G.1
-
20
-
-
33645966586
-
Model for lattice thermal conductivity at low temperatures
-
J. Callaway, "Model For Lattice Thermal Conductivity At Low Temperatures," Physical Review, vol. 113, pp. 1046-1051, 1959.
-
(1959)
Physical Review
, vol.113
, pp. 1046-1051
-
-
Callaway, J.1
-
22
-
-
36149027789
-
Lattice thermal conductivity of disordered semiconductor alloys at high temperatures
-
B. Abeles, "Lattice Thermal Conductivity Of Disordered Semiconductor Alloys At High Temperatures," Physical Review, vol. 131, pp. 1906-&, 1963.
-
(1963)
Physical Review
, vol.131
, pp. 1906
-
-
Abeles, B.1
-
23
-
-
0027801267
-
-
Around room temperature, electronic thermal conductivity would be around ∼ 0.8 W/m-K based on modified Wiedemann Franz law (with electrical resistivity of ∼ 0.8 mΩcm and equation (4.1.19) in J. R. Drabble, and H. J. Goldsmid, Thermal conduction in semiconductors (Pergamon, New York, 1961)). However, Wiedemann Fraz law is only valid when momentum relaxation time governing electrical conductivity is the same as energy relaxation time governing electronic thermal conductivity, which is not valid near Debye temperature (G. S. Kumar, G. Prasad, and R. O. Phol, J. Mater. Sci. 28, 4261 (1993)). In this case, electronic thermal conductivity tends to be less than that predicted by Wiedemann Fraz law.
-
(1993)
J. Mater. Sci.
, vol.28
, pp. 4261
-
-
Kumar, G.S.1
Prasad, G.2
Phol, R.O.3
-
24
-
-
33747399522
-
-
W. Kim, J. M. Zide, A. C. Gossard, A. Shakouri, and A. Majumdar, unpublished
-
W. Kim, J. M. Zide, A. C. Gossard, A. Shakouri, and A. Majumdar, unpublished.
-
-
-
-
25
-
-
33747381791
-
-
W. Kim and A. Majumdar, unpublished
-
W. Kim and A. Majumdar, unpublished.
-
-
-
-
26
-
-
33747445299
-
-
A. Majumdar, P. Reddy, W. Kim, S. T. Huxtable, D. Y. Li, Z. Yang, and T. Tong, unpublished.
-
A. Majumdar, P. Reddy, W. Kim, S. T. Huxtable, D. Y. Li, Z. Yang, and T. Tong, unpublished.
-
-
-
-
29
-
-
2142815781
-
Improved thermoelectric power factor in metal-based superlattices
-
D. Vashaee and A. Shakouri, "Improved thermoelectric power factor in metal-based superlattices," Phys. Rev. Lett., vol. 92, 2004.
-
(2004)
Phys. Rev. Lett.
, vol.92
-
-
Vashaee, D.1
Shakouri, A.2
|