메뉴 건너뛰기




Volumn 10, Issue 1, 2006, Pages 28-39

Combining gene annotations and gene expression data in model-based clustering: Weighted method

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC METHOD; ARTICLE; CLUSTER ANALYSIS; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE FUNCTION; GENE FUNCTIONAL ANNOTATION SYSTEM; GENE ONTOLOGY; GLOBAL MIXTURE MODEL; MODEL; MODEL BASED CLUSTERING; MUNICH INFORMATION CENTER FOR PROTEIN SEQUENCES; PRIORITY JOURNAL; SIMULATION; STRATIFIED MIXTURE MODEL; WEIGHTED METHOD;

EID: 33645909894     PISSN: 15362310     EISSN: None     Source Type: Journal    
DOI: 10.1089/omi.2006.10.28     Document Type: Article
Times cited : (15)

References (39)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • The Gene Ontology Consortium
    • ASHBURNER, M., BALL, C.A., BLAKE, J.A., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 2
    • 0036377356 scopus 로고    scopus 로고
    • A new approach to analyzing gene expression time series data
    • Washington, DC
    • BAR-JOSEPH, Z., GERBER, G., GIFFORD, D.K., et al. (2002). A new approach to analyzing gene expression time series data. Presented at Recomb, Washington, DC.
    • (2002) Recomb
    • Bar-Joseph, Z.1    Gerber, G.2    Gifford, D.K.3
  • 3
    • 0036401627 scopus 로고    scopus 로고
    • Bayesian hierarchical model for identifying changes in gene expression from microarray experiments
    • BROET, P., RICHARDSON, S., and RADVANYI, F. (2002). Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. J Comput Biol 9, 671-683.
    • (2002) J Comput Biol , vol.9 , pp. 671-683
    • Broet, P.1    Richardson, S.2    Radvanyi, F.3
  • 4
    • 3142749026 scopus 로고    scopus 로고
    • A knowledge-based clustering algorithm driven by Gene Ontology
    • CHENG, J., CLINE, M., MARTIN, J., et al. (2004). A knowledge-based clustering algorithm driven by Gene Ontology. J Biopharm Stat 14, 687-700.
    • (2004) J Biopharm Stat , vol.14 , pp. 687-700
    • Cheng, J.1    Cline, M.2    Martin, J.3
  • 5
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • DATTA, S., and DATTA, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19, 459-466.
    • (2003) Bioinformatics , vol.19 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • DEMPSTER, A.P., LAIRD, N.M., and RUBIN, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc B 39, 1-38.
    • (1977) J Roy Statist Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • EISEN, M., SPELLMAN, P., BROWN, P., et al. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863-14868.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3
  • 8
    • 33645281761 scopus 로고    scopus 로고
    • Knowledge-guided analysis of microarray data
    • in press
    • FANG, Z., YANG, J, LI, Y., et al. (2006). Knowledge-guided analysis of microarray data. J Biomed Inform (in press).
    • (2006) J Biomed Inform
    • Fang, Z.1    Yang, J.2    Li, Y.3
  • 9
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? - Answers via model-based cluster analysis
    • FRALEY, C., and RAFTERY, A.E. (1998). How many clusters? Which clustering methods? - Answers via model-based cluster analysis. Comput J 41, 578-588.
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • FRALEY, C., and RAFTERY, A.E. (2002). Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97, 611-631.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • GHOSH, D., and CHINNAIYAN, A.M. (2002). Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18, 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 13
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • HANDL, J., KNOWLES, J., and KELL, DB. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201-3212.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 14
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • HANISCH, D., ZIEN, A., ZIMMER, R., et al. (2002). Co-clustering of biological networks and gene expression data. Bioinformatics 18, 145-154.
    • (2002) Bioinformatics , vol.18 , pp. 145-154
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3
  • 17
    • 24644470505 scopus 로고    scopus 로고
    • Ontological analysis of gene expression data: Current tools, limitations, and open problems
    • KHATRI, P., and DRAGHICI, S. (2005). Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21, 3587-3595.
    • (2005) Bioinformatics , vol.21 , pp. 3587-3595
    • Khatri, P.1    Draghici, S.2
  • 18
    • 18144444239 scopus 로고    scopus 로고
    • Cluster-Rasch models for microarray gene expression data
    • RESEARCH0031
    • LI, H., and HONG, F. (2001). Cluster-Rasch models for microarray gene expression data. Genome Biol 2, RESEARCH0031.
    • (2001) Genome Biol , vol.2
    • Li, H.1    Hong, F.2
  • 20
    • 0037469105 scopus 로고    scopus 로고
    • Modeling high-dimensional data by mixtures of factor analyzers
    • McLACHLAN, G.J., PEEL, D., and BEAN, R.W. (2003). Modeling high-dimensional data by mixtures of factor analyzers. Comput Stat Data Analysis 41, 379-388.
    • (2003) Comput Stat Data Analysis , vol.41 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 21
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression profiles
    • MEDVEDOVIC, M., and SIVAGANESAN, S. (2002). Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics 18, 1194-1206.
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 22
    • 9144242935 scopus 로고    scopus 로고
    • MIPS: Analysis and annotation of proteins from whole genomes
    • MEWES, H.W., AMID, C., ARNOLD, R., et al. (2004). MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32, D41-D44.
    • (2004) Nucleic Acids Res , vol.32
    • Mewes, H.W.1    Amid, C.2    Arnold, R.3
  • 23
    • 21844461828 scopus 로고    scopus 로고
    • Incorporating biological information as a prior in an empirical Bayes approach to analyzing microarray data
    • article 12
    • PAN, W. (2005a). Incorporating biological information as a prior in an empirical Bayes approach to analyzing microarray data. Statist Appl Genetics Mol Biol 4, article 12.
    • (2005) Statist Appl Genetics Mol Biol , vol.4
    • Pan, W.1
  • 24
    • 33645673675 scopus 로고    scopus 로고
    • Incorporating gene functional annotations in detecting differential gene expression
    • in press
    • PAN, W. (2006a). Incorporating gene functional annotations in detecting differential gene expression. Appl Stat (in press).
    • (2006) Appl Stat
    • Pan, W.1
  • 25
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • in press
    • PAN, W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics (in press).
    • (2006) Bioinformatics
    • Pan, W.1
  • 26
    • 0036372266 scopus 로고    scopus 로고
    • Model-based cluster analysis of microarray gene-expression data
    • RESEARCH0009
    • PAN, W., LIN, J., and LE, C.T. (2002). Model-based cluster analysis of microarray gene-expression data. Genome Biol 3, RESEARCH0009.
    • (2002) Genome Biol , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 27
  • 28
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • RICHARDSON, S., and GREEN, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. J Roy Statist Soc B 59, 731-758.
    • (1997) J Roy Statist Soc B , vol.59 , pp. 731-758
    • Richardson, S.1    Green, P.J.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimensions of a model
    • SCHWARZ, G. (1978). Estimating the dimensions of a model. Ann Stat 6, 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • SPELLMAN, P.T., SHERLOCK, G., ZHANG, M.Q., et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273-3297.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 31
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • TAMAYO, P., SLONIM, D., MESIROV, J., et al. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96, 2907-2912.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 32
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • TAVAZOIE, S., HUGHES, J.D., CAMPBELL, M.J., et al. (1999). Systematic determination of genetic network architecture. Nat Genet 22, 281-285.
    • (1999) Nat Genet , vol.22 , pp. 281-285
    • Tavazoie, S.1    Hughes, J.D.2    Campbell, M.J.3
  • 33
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • TSENG, G.G., and WONG, W.H. (2005). Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.G.1    Wong, W.H.2
  • 34
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • WU, L.F., HUGHES, T.R., DAVIERWALA, A.P., et al. (2002). Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat Genet 31, 255-265.
    • (2002) Nat Genet , vol.31 , pp. 255-265
    • Wu, L.F.1    Hughes, T.R.2    Davierwala, A.P.3
  • 35
    • 31044452892 scopus 로고    scopus 로고
    • Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data
    • XIAO, G., and PAN, W. (2004). Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data. J Bioinform Comput Biol 3, 1371-1389.
    • (2004) J Bioinform Comput Biol , vol.3 , pp. 1371-1389
    • Xiao, G.1    Pan, W.2
  • 36
    • 33645930538 scopus 로고    scopus 로고
    • Division of Biostatistics
    • RESEARCH REPORT 2004-026. Division of Biostatistics, University of Minnesota. Available: (www.biostat.umn. edu/rrs.php).
    • Research Report 2004-026
  • 37
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • YEUNG, K.Y., FRALEY, C., MURUA, A., et al. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3
  • 38
    • 0035826942 scopus 로고    scopus 로고
    • Statistical modeling of large microarray data sets to identify stimulus-response profiles
    • ZHAO, L.P., PRENTICE, R., and BREEDEN, L. (2001). Statistical modeling of large microarray data sets to identify stimulus-response profiles. Proc Natl Acad Sci USA 98, 5631-5636.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5631-5636
    • Zhao, L.P.1    Prentice, R.2    Breeden, L.3
  • 39
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • ZHOU, X., KAO, M.C., and WONG, W.H. (2002). Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99, 12783-12788.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12783-12788
    • Zhou, X.1    Kao, M.C.2    Wong, W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.