메뉴 건너뛰기




Volumn 18, Issue 4, 2006, Pages 961-978

Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33645727457     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2006.18.4.961     Document Type: Article
Times cited : (81)

References (28)
  • 2
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Bengio, Y. (2000). Gradient-based optimization of hyper-parameters. Neural Computation, 12, 1889-1900.
    • (2000) Neural Computation , vol.12 , pp. 1889-1900
    • Bengio, Y.1
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science. Available online at http://www.ics.uci.edu/ ~mlearn/MLRepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 4
    • 0141639615 scopus 로고    scopus 로고
    • Efficient leave-one-out cross validation of kernel Fisher discriminant classifiers
    • Cawley, G. C., & Talbot, N. L. C. (2003). Efficient leave-one-out cross validation of kernel Fisher discriminant classifiers. Pattern Recognition, 36, 2585-2592.
    • (2003) Pattern Recognition , vol.36 , pp. 2585-2592
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131-159.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual of Eugenics, 7, 179-188.
    • (1936) Annual of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 9
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel Fisher discriminant analysis
    • Gestel, T. V., Suykens, J., Lanckriet, C., Lambrechts, A., Moor, B. D., & Vandewalle, J. (2002). Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel Fisher discriminant analysis. Neural Computation, 15, 1115-1148.
    • (2002) Neural Computation , vol.15 , pp. 1115-1148
    • Gestel, T.V.1    Suykens, J.2    Lanckriet, C.3    Lambrechts, A.4    Moor, B.D.5    Vandewalle, J.6
  • 10
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13, 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 13
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • Lowe, D. (1995). Similarity metric learning for a variable-kernel classifier, Neural Computation, 7, 72-85.
    • (1995) Neural Computation , vol.7 , pp. 72-85
    • Lowe, D.1
  • 14
    • 0003281852 scopus 로고
    • On estimation of characters obtained in statistical procedure of recognition
    • Luntz, A., & Brailovsky, V. (1969). On estimation of characters obtained in statistical procedure of recognition. (In Russian). Techicheskaya Kibernetica, 3.
    • (1969) Techicheskaya Kibernetica , pp. 3
    • Luntz, A.1    Brailovsky, V.2
  • 15
    • 1542337814 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, University of Technology, Berlin
    • Mika, S. (2002). Kernel fisher discriminants. Unpublished doctoral dissertation, University of Technology, Berlin.
    • (2002) Kernel Fisher Discriminants
    • Mika, S.1
  • 18
    • 0004311187 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, University of Potsdam, Potsdam, Germany
    • Rätsch, G. (2001). Robust boosting via convex optimization. Unpublished doctoral dissertation, University of Potsdam, Potsdam, Germany.
    • (2001) Robust Boosting Via Convex Optimization
    • Rätsch, G.1
  • 21
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers, Neural Processing Letters, 9, 293-300.
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 22
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal Machine Learning Research, 1, 211-244.
    • (2001) Journal Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 25
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik, V., & O. Chapelle. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12, 2013-2036.
    • (2000) Neural Computation , vol.12 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.