메뉴 건너뛰기




Volumn 23, Issue 2, 2006, Pages 133-141

An equivalence between SILF-SVR and ordinary kriging

Author keywords

Equivalence; Kriging; Soft insensitive loss function; Support vector regression

Indexed keywords

FUNCTION EVALUATION; LEARNING SYSTEMS; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 33645527370     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-005-4015-7     Document Type: Article
Times cited : (8)

References (15)
  • 1
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C. and Vapnik, V.: Support vector networks, Mach. Learn. 20 (1995), 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 0000299922 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C.: A tutorial on support vector machines for pattern recognition, Knowl. Disc Data Min. 2 (1998), 1-43.
    • (1998) Knowl. Disc Data Min. , vol.2 , pp. 1-43
    • Burges, C.J.C.1
  • 5
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression, Stat. Comput. 14 (2004), 199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 6
    • 26844550498 scopus 로고    scopus 로고
    • An information-geometrical approach to constructing kernel in support vector regression machines
    • L. Wang, K. Chen, and Y. S. Ong (eds.), LNCS 3610, Changsha, China
    • An W. S. and Sun Y. G.: An information-geometrical approach to constructing kernel in support vector regression machines. In: L. Wang, K. Chen, and Y. S. Ong (eds.), Proceedings of the First International Conference on Natural Computation, LNCS 3610, pp. 544-551, Changsha, China, 2005.
    • (2005) Proceedings of the First International Conference on Natural Computation , pp. 544-551
    • An, W.S.1    Sun, Y.G.2
  • 7
    • 4644290661 scopus 로고    scopus 로고
    • Training algorithms for fuzzy support vector machines with noisy data
    • Lin, C. F. and Wang, S. D.: Training algorithms for fuzzy support vector machines with noisy data, Pattern Recogn. Lett. 25 (2004), 1647-1656.
    • (2004) Pattern Recogn. Lett. , vol.25 , pp. 1647-1656
    • Lin, C.F.1    Wang, S.D.2
  • 9
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • Krige, D. G.: A statistical approach to some basic mine valuation problems on the Witwatersrand, J. Chem. Metall. Min. Soc. S. Afr. 52 (1951), 119-139.
    • (1951) J. Chem. Metall. Min. Soc. S. Afr. , vol.52 , pp. 119-139
    • Krige, D.G.1
  • 11
    • 84865486245 scopus 로고
    • Principles of geostatistics
    • Matheron, G.: Principles of geostatistics. Econ. Geol. 58 (1963), 1246-1266.
    • (1963) Econ. Geol. , vol.58 , pp. 1246-1266
    • Matheron, G.1
  • 12
    • 0004222008 scopus 로고    scopus 로고
    • Oxford, Oxford University Press
    • Mallet, J. C.: Geomodeling, Oxford, Oxford University Press, 2002.
    • (2002) Geomodeling
    • Mallet, J.C.1
  • 14
    • 33645526937 scopus 로고    scopus 로고
    • The parameter estimation of RBF kernel function based on variogram
    • Yan, H. et al.: The parameter estimation of RBF kernel function based on variogram, Acta Automatica Sinica, 28 (2002), 450-455.
    • (2002) Acta Automatica Sinica , vol.28 , pp. 450-455
    • Yan, H.1
  • 15
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • Chu, W., Keerthi, S. S. and Ong, C. J.: Bayesian support vector regression using a unified loss function, IEEE Trans. Neural Networks, 15 (2004), 29-44.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.