메뉴 건너뛰기




Volumn 22, Issue 6, 2006, Pages 755-761

Optimized multilayer perceptrons for molecular classification and diagnosis using genomic data

Author keywords

[No Author keywords available]

Indexed keywords

BCR ABL PROTEIN; CALPAIN 3; DYSFERLIN; DYSTROPHIN; FUKUTIN;

EID: 33645097857     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btk036     Document Type: Article
Times cited : (28)

References (28)
  • 1
    • 0034601455 scopus 로고    scopus 로고
    • Molecular classification of cutaneous malignant melanoma by gene expression profiling
    • Bittner,M. et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536-540.
    • (2000) Nature , vol.406 , pp. 536-540
    • Bittner, M.1
  • 2
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown,M.P. et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA, 97, 262-267.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.P.1
  • 3
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub,T.R. et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 4
    • 0003562954 scopus 로고    scopus 로고
    • A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
    • Hand,D.J. and Till,R.J. (2001) A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45, 171-186.
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 7
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan,J. et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med., 7, 673-679.
    • (2001) Nat. Med. , vol.7 , pp. 673-679
    • Khan, J.1
  • 8
    • 0742289562 scopus 로고    scopus 로고
    • Pediatric acute lymphoblastic leukemia (ALL) gene expression signature classify an independent cohort of adult ALL patients
    • Kohlmann,K. et al. (2004) Pediatric acute lymphoblastic leukemia (ALL) gene expression signature classify an independent cohort of adult ALL patients. Leukemia, 18, 63-71.
    • (2004) Leukemia , vol.18 , pp. 63-71
    • Kohlmann, K.1
  • 9
    • 4544250158 scopus 로고    scopus 로고
    • The 'subsequent artificial neural network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses
    • Linder,R. et al. (2004) The 'subsequent artificial neural network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses. Bioinformatics, 20, 3544-3552.
    • (2004) Bioinformatics , vol.20 , pp. 3544-3552
    • Linder, R.1
  • 10
    • 0035393361 scopus 로고    scopus 로고
    • Multiclass linear dimension reduction by weighted pairwise Fisher criteria
    • Loog,M. et al. (2001) Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell., 23, 762-766.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , pp. 762-766
    • Loog, M.1
  • 11
    • 0003147836 scopus 로고
    • Statistical analysis of ROC data in evaluating diagnostic performance
    • Metz,C. (1986) Statistical analysis of ROC data in evaluating diagnostic performance. Mult. Regression Anal., 365-384.
    • (1986) Mult. Regression Anal. , pp. 365-384
    • Metz, C.1
  • 12
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: State of the art and future prospects
    • Mjolsness,E. and DeCoste,D. (2001) Machine learning for science: State of the art and future prospects. Science, 293, 2051-2055.
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 13
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect
    • O'Neill,M.C. and Song,L. (2003) Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect. BMC Bioinformatics, 4, 13.
    • (2003) BMC Bioinformatics , vol.4 , pp. 13
    • O'Neill, M.C.1    Song, L.2
  • 14
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy,S. et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.1
  • 15
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy,S. et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA, 98, 15149-15154.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 15149-15154
    • Ramaswamy, S.1
  • 16
    • 33645109544 scopus 로고
    • Accuracy of feature selection and extraction in statistical and neural net pattern classification
    • Raudys,S. (1992) Accuracy of feature selection and extraction in statistical and neural net pattern classification. Proc. Int. Conf. Pattern Recogn., 2, 62-70.
    • (1992) Proc. Int. Conf. Pattern Recogn. , vol.2 , pp. 62-70
    • Raudys, S.1
  • 17
    • 85013560142 scopus 로고
    • Why do multilayer perceptrons have favorable small sample properties?
    • Elsevier Science B. V
    • Raudys,S. (1994) Why do multilayer perceptrons have favorable small sample properties? Pattern Recognition in Practice IV, Elsevier Science B. V., 287-298.
    • (1994) Pattern Recognition in Practice IV , pp. 287-298
    • Raudys, S.1
  • 18
    • 0031162662 scopus 로고    scopus 로고
    • On dimensionality, sample size, and classification error of non-parametric linear classification algorithms
    • Raudys,S. (1997) On dimensionality, sample size, and classification error of non-parametric linear classification algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 19, 667-671.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , pp. 667-671
    • Raudys, S.1
  • 19
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Raudys,S. and Jain,A.K. (1991) Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell., 13, 252-264.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , pp. 252-264
    • Raudys, S.1    Jain, A.K.2
  • 20
    • 84947753873 scopus 로고
    • The role of the number of training samples on weight initialisation of artificial neural net classifier
    • Raudys,S. and Skurikhina,M. (1992) The role of the number of training samples on weight initialisation of artificial neural net classifier. RNNS/IEEE Symp. Neuroinform. Neurocomput., 1, 343-353.
    • (1992) RNNS/IEEE Symp. Neuroinform. Neurocomput. , vol.1 , pp. 343-353
    • Raudys, S.1    Skurikhina, M.2
  • 22
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp,M.A. et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med., 8, 68-74.
    • (2002) Nat. Med. , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 23
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov,A. et al. (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21, 631-643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1
  • 24
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer,L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1
  • 26
    • 4944248113 scopus 로고    scopus 로고
    • Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma
    • [Erratum (2005) Cancer Res., 65, 374.]
    • Wei,J.S. et al. (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma [Erratum (2005) Cancer Res., 65, 374.]. Cancer Res., 64, 6883-6891.
    • (2004) Cancer Res. , vol.64 , pp. 6883-6891
    • Wei, J.S.1
  • 27
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer by using gene expression profiles
    • West,M. et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl Acad. Sci. USA, 98, 11462-11467.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 11462-11467
    • West, M.1
  • 28
    • 10044272925 scopus 로고    scopus 로고
    • Robust feature selection by weighted fisher criterion for multiclass prediction in gene expression profiling
    • Xuan,J., Dong,Y., Khan,J., Hoffman,E.P., Clarke,R. and Wang,Y. (2004) Robust feature selection by weighted fisher criterion for multiclass prediction in gene expression profiling. Proc. Int. Conf. Pattern Recogn., 2, 291-94.
    • (2004) Proc. Int. Conf. Pattern Recogn. , vol.2 , pp. 291-294
    • Xuan, J.1    Dong, Y.2    Khan, J.3    Hoffman, E.P.4    Clarke, R.5    Wang, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.