메뉴 건너뛰기




Volumn 21, Issue 1, 2006, Pages

Nonlinear kernel forms of classical linear algorithms

Author keywords

Kernel forms; Kernel function; Machine learning; Support vector machine

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; ITERATIVE METHODS; OPTIMIZATION; STABILITY; VECTORS;

EID: 33644943386     PISSN: 10010920     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (49)
  • 5
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M A, Braverman E M, Rozonoer L I. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning [J]. Automation and Remote Control, 1964, 25(6): 821-837.
    • (1964) Automation and Remote Control , vol.25 , Issue.6 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 8
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistics perspective
    • Genton M G. Classes of Kernels for Machine Learning: A Statistics Perspective [J]. J of Machine Learning Research, 2001, 2: 299-312.
    • (2001) J of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 9
    • 0033670134 scopus 로고    scopus 로고
    • Engineering SVM kernels that recognize translation initiation sites
    • Zein A, Raetsch G, Mika S, et al. Engineering SVM Kernels That Recognize Translation Initiation Sites [J]. Bioinformatics, 2000, 16(9): 799-807.
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zein, A.1    Raetsch, G.2    Mika, S.3
  • 10
    • 0034048878 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • Jaakkola T, Diekhaus M, Haussler D. A Discriminative Framework for Detecting Remote Protein Homologies[J]. J of Computational Biology, 2000, 7(1-2): 95-114.
    • (2000) J of Computational Biology , vol.7 , Issue.1-2 , pp. 95-114
    • Jaakkola, T.1    Diekhaus, M.2    Haussler, D.3
  • 11
    • 0346895562 scopus 로고    scopus 로고
    • Asymptotic properties of the Fisher kernel
    • Tsuda K, Akaho S, Kawanabe M, et al. Asymptotic Properties of the Fisher Kernel [J]. Neural Computation, 2004, 16(1): 115-137.
    • (2004) Neural Computation , vol.16 , Issue.1 , pp. 115-137
    • Tsuda, K.1    Akaho, S.2    Kawanabe, M.3
  • 12
    • 0036780246 scopus 로고    scopus 로고
    • A new discriminative kernel from probabilistic models
    • Tsuda K, Kawanabe M, Ratsch G, et al. A New Discriminative Kernel From Probabilistic Models [J]. Neural Computation, 2002, 14(10): 2397-2414.
    • (2002) Neural Computation , vol.14 , Issue.10 , pp. 2397-2414
    • Tsuda, K.1    Kawanabe, M.2    Ratsch, G.3
  • 13
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: State of the art and future prospects
    • Mjolsness E, DeCoste D. Machine Learning for Science: State of the Art and Future Prospects [J]. Science, 2001, 293(5537): 2051-2055.
    • (2001) Science , vol.293 , Issue.5537 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 15
    • 0004172716 scopus 로고    scopus 로고
    • Second Edition. Beijing: Tsinghua University Press
    • Bian Z Q, Zhang X G, et al. Pattern Recognition [M]. Second Edition. Beijing: Tsinghua University Press, 2000.
    • (2000) Pattern Recognition
    • Bian, Z.Q.1    Zhang, X.G.2
  • 17
    • 0034151613 scopus 로고    scopus 로고
    • Second order learning algorithm with squared penalty term
    • Saito K, Nakano R. Second Order Learning Algorithm with Squared Penalty Term[J]. Neural Computation, 2000, 12(3): 709-729.
    • (2000) Neural Computation , vol.12 , Issue.3 , pp. 709-729
    • Saito, K.1    Nakano, R.2
  • 19
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopt B, Smora A, Muller K-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopt, B.1    Smora, A.2    Muller, K.-R.3
  • 22
    • 0000068822 scopus 로고    scopus 로고
    • Mathematical programming approach to the kernel fisher algorithm
    • Cambridge MA: MIT Press
    • Mika S, Ratsch G, Muller K-R. A Mathematical Programming Approach to the Kernel Fisher Algorithm [A]. Advances in Neural Information Processing System 13 [C]. Cambridge MA: MIT Press, 2002: 591-597.
    • (2002) Advances in Neural Information Processing System , vol.13 , pp. 591-597
    • Mika, S.1    Ratsch, G.2    Muller, K.-R.3
  • 23
    • 0005073887 scopus 로고    scopus 로고
    • An improving training algorithm for kernel Fisher discriminants
    • San Francisco CA: Morgan Kaufmann
    • Mika S, Smola A J, Scholkopf B. An Improving Training Algorithm for Kernel Fisher Discriminants [A]. Proc of Artificial Intelligence and Statistics[C]. San Francisco CA: Morgan Kaufmann, 2001: 98-104.
    • (2001) Proc of Artificial Intelligence and Statistics , pp. 98-104
    • Mika, S.1    Smola, A.J.2    Scholkopf, B.3
  • 24
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach [J]. Neural Computation, 2000, 12(10): 2385-2404.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 28
  • 30
    • 0034863533 scopus 로고    scopus 로고
    • Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR
    • New York: IEEE Press
    • Xu J, Zhang X, Li Y. Kernel MSE Algorithm: A Unified Framework for KFD, LS-SVM and KRR[A]. Proc of 2001 Int Joint Conf on Neural Networks[C]. New York: IEEE Press, 2001: 1486-1491.
    • (2001) Proc of 2001 Int Joint Conf on Neural Networks , pp. 1486-1491
    • Xu, J.1    Zhang, X.2    Li, Y.3
  • 31
    • 2342599779 scopus 로고    scopus 로고
    • Regularized kernel forms of minimum squared error methods
    • Xu J H, Zhang X G, Li Y D. Regularized Kernel Forms of Minimum Squared Error Methods[J]. Acta Automatica Sinica, 2004, 30(1): 27-36.
    • (2004) Acta Automatica Sinica , vol.30 , Issue.1 , pp. 27-36
    • Xu, J.H.1    Zhang, X.G.2    Li, Y.D.3
  • 33
    • 0000759079 scopus 로고
    • The adatron: An adaptive perception
    • Anlauf J K, Biehl M. The Adatron: An Adaptive Perception [J]. Europhysics Letter, 1989, 10(7): 687-692.
    • (1989) Europhysics Letter , vol.10 , Issue.7 , pp. 687-692
    • Anlauf, J.K.1    Biehl, M.2
  • 34
    • 0000897328 scopus 로고    scopus 로고
    • The kernel adatron: A fast and simple learning procedure for support vector machines
    • San Francisco CA: Morgan Kaufmann
    • Friess T, Cristianini N, Campbell C. The Kernel Adatron: A Fast and Simple Learning Procedure for Support Vector Machines [A]. Proc of the Fifteenth Int Conf of Machine Learning[C]. San Francisco CA: Morgan Kaufmann, 1998: 188-196.
    • (1998) Proc of the Fifteenth Int Conf of Machine Learning , pp. 188-196
    • Friess, T.1    Cristianini, N.2    Campbell, C.3
  • 36
    • 0011489095 scopus 로고    scopus 로고
    • Linear discriminant and support vector classifiers
    • Cambridge MA: MIT Press
    • Guyon I, Stork D G. Linear Discriminant and Support Vector Classifiers [A]. Advances in Large Margin Classifiers [C]. Cambridge MA: MIT Press, 2000: 147-170.
    • (2000) Advances in Large Margin Classifiers , pp. 147-170
    • Guyon, I.1    Stork, D.G.2
  • 37
    • 0036662368 scopus 로고    scopus 로고
    • A nonlinear perception algorithm based on kernel functions
    • Xu J H, Zhang X G, Li Y D. A Nonlinear Perception Algorithm Based on Kernel Functions[J]. Chinese J of Computers, 2002, 25(7): 689-695
    • (2002) Chinese J of Computers , vol.25 , Issue.7 , pp. 689-695
    • Xu, J.H.1    Zhang, X.G.2    Li, Y.D.3
  • 38
    • 0043028313 scopus 로고    scopus 로고
    • Nonlinear pocket algorithm with kernels
    • Xu J H, Zhang X G, Li Y D. Nonlinear Pocket Algorithm with Kernels [J]. Acta Electronica Sinica, 2003, 31(4): 612-615.
    • (2003) Acta Electronica Sinica , vol.31 , Issue.4 , pp. 612-615
    • Xu, J.H.1    Zhang, X.G.2    Li, Y.D.3
  • 40
    • 0031145145 scopus 로고    scopus 로고
    • On convergence properties of pocket algorithm
    • Muselli M. On Convergence Properties of Pocket Algorithm [J]. IEEE Trans on Neural Networks, 1997, 8(3): 623-629.
    • (1997) IEEE Trans on Neural Networks , vol.8 , Issue.3 , pp. 623-629
    • Muselli, M.1
  • 43
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural Learning with Forgetting[J]. Neural Networks, 1996, 9(3): 509-521.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 45
    • 35048858311 scopus 로고    scopus 로고
    • A learning algorithm with Gaussian regularizer for kernel neuron
    • Berlin: Springer
    • Xu J, Zhang X. A Learning Algorithm with Gaussian Regularizer for Kernel Neuron [A]. 2004 Int Symposium on Neural Networks[C]. Berlin: Springer, 2004: 252-257.
    • (2004) 2004 Int Symposium on Neural Networks , pp. 252-257
    • Xu, J.1    Zhang, X.2
  • 46
    • 0036529857 scopus 로고    scopus 로고
    • Kernel nearest neighbor algorithm
    • Yu K, Ji L, Zhang X. Kernel Nearest Neighbor Algorithm [J]. Neural Processing Letters, 2002, 15(2): 147-156.
    • (2002) Neural Processing Letters , vol.15 , Issue.2 , pp. 147-156
    • Yu, K.1    Ji, L.2    Zhang, X.3
  • 47
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Cambridge MA: MIT Press
    • Joachims T. Making Large-scale SVM Learning Practical [A]. Advances in Kernel Methods-Support Vector Learning [C]. Cambridge MA: MIT Press, 1999: 169-184.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 49
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C W, Lin C J. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.
    • (2002) IEEE Trans on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.