-
5
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman M A, Braverman E M, Rozonoer L I. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning [J]. Automation and Remote Control, 1964, 25(6): 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, Issue.6
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoer, L.I.3
-
8
-
-
0038259114
-
Classes of kernels for machine learning: A statistics perspective
-
Genton M G. Classes of Kernels for Machine Learning: A Statistics Perspective [J]. J of Machine Learning Research, 2001, 2: 299-312.
-
(2001)
J of Machine Learning Research
, vol.2
, pp. 299-312
-
-
Genton, M.G.1
-
9
-
-
0033670134
-
Engineering SVM kernels that recognize translation initiation sites
-
Zein A, Raetsch G, Mika S, et al. Engineering SVM Kernels That Recognize Translation Initiation Sites [J]. Bioinformatics, 2000, 16(9): 799-807.
-
(2000)
Bioinformatics
, vol.16
, Issue.9
, pp. 799-807
-
-
Zein, A.1
Raetsch, G.2
Mika, S.3
-
10
-
-
0034048878
-
A discriminative framework for detecting remote protein homologies
-
Jaakkola T, Diekhaus M, Haussler D. A Discriminative Framework for Detecting Remote Protein Homologies[J]. J of Computational Biology, 2000, 7(1-2): 95-114.
-
(2000)
J of Computational Biology
, vol.7
, Issue.1-2
, pp. 95-114
-
-
Jaakkola, T.1
Diekhaus, M.2
Haussler, D.3
-
11
-
-
0346895562
-
Asymptotic properties of the Fisher kernel
-
Tsuda K, Akaho S, Kawanabe M, et al. Asymptotic Properties of the Fisher Kernel [J]. Neural Computation, 2004, 16(1): 115-137.
-
(2004)
Neural Computation
, vol.16
, Issue.1
, pp. 115-137
-
-
Tsuda, K.1
Akaho, S.2
Kawanabe, M.3
-
12
-
-
0036780246
-
A new discriminative kernel from probabilistic models
-
Tsuda K, Kawanabe M, Ratsch G, et al. A New Discriminative Kernel From Probabilistic Models [J]. Neural Computation, 2002, 14(10): 2397-2414.
-
(2002)
Neural Computation
, vol.14
, Issue.10
, pp. 2397-2414
-
-
Tsuda, K.1
Kawanabe, M.2
Ratsch, G.3
-
13
-
-
0035860537
-
Machine learning for science: State of the art and future prospects
-
Mjolsness E, DeCoste D. Machine Learning for Science: State of the Art and Future Prospects [J]. Science, 2001, 293(5537): 2051-2055.
-
(2001)
Science
, vol.293
, Issue.5537
, pp. 2051-2055
-
-
Mjolsness, E.1
DeCoste, D.2
-
15
-
-
0004172716
-
-
Second Edition. Beijing: Tsinghua University Press
-
Bian Z Q, Zhang X G, et al. Pattern Recognition [M]. Second Edition. Beijing: Tsinghua University Press, 2000.
-
(2000)
Pattern Recognition
-
-
Bian, Z.Q.1
Zhang, X.G.2
-
17
-
-
0034151613
-
Second order learning algorithm with squared penalty term
-
Saito K, Nakano R. Second Order Learning Algorithm with Squared Penalty Term[J]. Neural Computation, 2000, 12(3): 709-729.
-
(2000)
Neural Computation
, vol.12
, Issue.3
, pp. 709-729
-
-
Saito, K.1
Nakano, R.2
-
19
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Scholkopt B, Smora A, Muller K-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopt, B.1
Smora, A.2
Muller, K.-R.3
-
22
-
-
0000068822
-
Mathematical programming approach to the kernel fisher algorithm
-
Cambridge MA: MIT Press
-
Mika S, Ratsch G, Muller K-R. A Mathematical Programming Approach to the Kernel Fisher Algorithm [A]. Advances in Neural Information Processing System 13 [C]. Cambridge MA: MIT Press, 2002: 591-597.
-
(2002)
Advances in Neural Information Processing System
, vol.13
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Muller, K.-R.3
-
23
-
-
0005073887
-
An improving training algorithm for kernel Fisher discriminants
-
San Francisco CA: Morgan Kaufmann
-
Mika S, Smola A J, Scholkopf B. An Improving Training Algorithm for Kernel Fisher Discriminants [A]. Proc of Artificial Intelligence and Statistics[C]. San Francisco CA: Morgan Kaufmann, 2001: 98-104.
-
(2001)
Proc of Artificial Intelligence and Statistics
, pp. 98-104
-
-
Mika, S.1
Smola, A.J.2
Scholkopf, B.3
-
24
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach [J]. Neural Computation, 2000, 12(10): 2385-2404.
-
(2000)
Neural Computation
, vol.12
, Issue.10
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
25
-
-
0038610904
-
Nonlinear multiclass discriminant analysis
-
Ma J, Sancho-Gomez J L, Ahalt S C. Nonlinear Multiclass Discriminant Analysis [J]. IEEE Signal Processing Letters, 2003, 10(7): 196-200.
-
(2003)
IEEE Signal Processing Letters
, vol.10
, Issue.7
, pp. 196-200
-
-
Ma, J.1
Sancho-Gomez, J.L.2
Ahalt, S.C.3
-
30
-
-
0034863533
-
Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR
-
New York: IEEE Press
-
Xu J, Zhang X, Li Y. Kernel MSE Algorithm: A Unified Framework for KFD, LS-SVM and KRR[A]. Proc of 2001 Int Joint Conf on Neural Networks[C]. New York: IEEE Press, 2001: 1486-1491.
-
(2001)
Proc of 2001 Int Joint Conf on Neural Networks
, pp. 1486-1491
-
-
Xu, J.1
Zhang, X.2
Li, Y.3
-
31
-
-
2342599779
-
Regularized kernel forms of minimum squared error methods
-
Xu J H, Zhang X G, Li Y D. Regularized Kernel Forms of Minimum Squared Error Methods[J]. Acta Automatica Sinica, 2004, 30(1): 27-36.
-
(2004)
Acta Automatica Sinica
, vol.30
, Issue.1
, pp. 27-36
-
-
Xu, J.H.1
Zhang, X.G.2
Li, Y.D.3
-
33
-
-
0000759079
-
The adatron: An adaptive perception
-
Anlauf J K, Biehl M. The Adatron: An Adaptive Perception [J]. Europhysics Letter, 1989, 10(7): 687-692.
-
(1989)
Europhysics Letter
, vol.10
, Issue.7
, pp. 687-692
-
-
Anlauf, J.K.1
Biehl, M.2
-
34
-
-
0000897328
-
The kernel adatron: A fast and simple learning procedure for support vector machines
-
San Francisco CA: Morgan Kaufmann
-
Friess T, Cristianini N, Campbell C. The Kernel Adatron: A Fast and Simple Learning Procedure for Support Vector Machines [A]. Proc of the Fifteenth Int Conf of Machine Learning[C]. San Francisco CA: Morgan Kaufmann, 1998: 188-196.
-
(1998)
Proc of the Fifteenth Int Conf of Machine Learning
, pp. 188-196
-
-
Friess, T.1
Cristianini, N.2
Campbell, C.3
-
36
-
-
0011489095
-
Linear discriminant and support vector classifiers
-
Cambridge MA: MIT Press
-
Guyon I, Stork D G. Linear Discriminant and Support Vector Classifiers [A]. Advances in Large Margin Classifiers [C]. Cambridge MA: MIT Press, 2000: 147-170.
-
(2000)
Advances in Large Margin Classifiers
, pp. 147-170
-
-
Guyon, I.1
Stork, D.G.2
-
37
-
-
0036662368
-
A nonlinear perception algorithm based on kernel functions
-
Xu J H, Zhang X G, Li Y D. A Nonlinear Perception Algorithm Based on Kernel Functions[J]. Chinese J of Computers, 2002, 25(7): 689-695
-
(2002)
Chinese J of Computers
, vol.25
, Issue.7
, pp. 689-695
-
-
Xu, J.H.1
Zhang, X.G.2
Li, Y.D.3
-
38
-
-
0043028313
-
Nonlinear pocket algorithm with kernels
-
Xu J H, Zhang X G, Li Y D. Nonlinear Pocket Algorithm with Kernels [J]. Acta Electronica Sinica, 2003, 31(4): 612-615.
-
(2003)
Acta Electronica Sinica
, vol.31
, Issue.4
, pp. 612-615
-
-
Xu, J.H.1
Zhang, X.G.2
Li, Y.D.3
-
40
-
-
0031145145
-
On convergence properties of pocket algorithm
-
Muselli M. On Convergence Properties of Pocket Algorithm [J]. IEEE Trans on Neural Networks, 1997, 8(3): 623-629.
-
(1997)
IEEE Trans on Neural Networks
, vol.8
, Issue.3
, pp. 623-629
-
-
Muselli, M.1
-
43
-
-
0030130724
-
Structural learning with forgetting
-
Ishikawa M. Structural Learning with Forgetting[J]. Neural Networks, 1996, 9(3): 509-521.
-
(1996)
Neural Networks
, vol.9
, Issue.3
, pp. 509-521
-
-
Ishikawa, M.1
-
45
-
-
35048858311
-
A learning algorithm with Gaussian regularizer for kernel neuron
-
Berlin: Springer
-
Xu J, Zhang X. A Learning Algorithm with Gaussian Regularizer for Kernel Neuron [A]. 2004 Int Symposium on Neural Networks[C]. Berlin: Springer, 2004: 252-257.
-
(2004)
2004 Int Symposium on Neural Networks
, pp. 252-257
-
-
Xu, J.1
Zhang, X.2
-
46
-
-
0036529857
-
Kernel nearest neighbor algorithm
-
Yu K, Ji L, Zhang X. Kernel Nearest Neighbor Algorithm [J]. Neural Processing Letters, 2002, 15(2): 147-156.
-
(2002)
Neural Processing Letters
, vol.15
, Issue.2
, pp. 147-156
-
-
Yu, K.1
Ji, L.2
Zhang, X.3
-
47
-
-
0002714543
-
Making large-scale SVM learning practical
-
Cambridge MA: MIT Press
-
Joachims T. Making Large-scale SVM Learning Practical [A]. Advances in Kernel Methods-Support Vector Learning [C]. Cambridge MA: MIT Press, 1999: 169-184.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
49
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C W, Lin C J. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.
-
(2002)
IEEE Trans on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
|