메뉴 건너뛰기




Volumn 30, Issue 1, 2004, Pages 26-36

Regularized kernel forms of minimum squared error methods

Author keywords

Kernel form; Nonlinear; Regularization; Squared error; Support vector machines

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; FUNCTIONS; LINEAR EQUATIONS; OPTIMIZATION; PROBABILITY; REGRESSION ANALYSIS;

EID: 2342599779     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (33)
  • 4
    • 0041698202 scopus 로고
    • The use of an adaptive threshold element to design a linear optimal pattern classifier
    • Koford J S, Groner G F. The use of an adaptive threshold element to design a linear optimal pattern classifier. IEEE Transactions on Information Theory, 1966, 12(1): 42-50
    • (1966) IEEE Transactions on Information Theory , vol.12 , Issue.1 , pp. 42-50
    • Koford, J.S.1    Groner, G.F.2
  • 7
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V N. Support vector networks. Machine Learning, 1995, 20(3): 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 10
    • 0002343859 scopus 로고    scopus 로고
    • Introduction to statistical learning theory and support vector machines
    • Chinese source
    • Zhang Xue-Gong. Introduction to statistical learning theory and support vector machines. Acta Automatica Sinica, 2000, 26(1): 32-44 (in Chinese)
    • (2000) Acta Automatica Sinica , vol.26 , Issue.1 , pp. 32-44
    • Zhang, X.-G.1
  • 11
    • 84956689194 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • Springer Lecture Notes in Computer Science
    • Scholkopf B, Smola A, Muller K-R. Kernel principal component analysis. In Proceedings ICANN'97, Springer Lecture Notes in Computer Science, 1997. 583-589
    • (1997) Proceedings ICANN'97 , pp. 583-589
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 12
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B, Smola A, Muller K-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 18
    • 0034863533 scopus 로고    scopus 로고
    • Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR
    • Washington DC, USA: IEEE Press
    • Xu J, Zhang X, Li Y. Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR. In: International Joint Conference on Neural Networks 2001. Washington DC, USA: IEEE Press, 2001. 1486-1491
    • (2001) International Joint Conference on Neural Networks 2001 , pp. 1486-1491
    • Xu, J.1    Zhang, X.2    Li, Y.3
  • 19
    • 0003664883 scopus 로고
    • Solution of ill-posed problem
    • Washington DC: Winston and Sons
    • Tikhonov A N, Arsenin V Y. Solution of ill-posed problem. Washington DC: Winston and Sons, 1977
    • (1977)
    • Tikhonov, A.N.1    Arsenin, V.Y.2
  • 20
    • 0004021371 scopus 로고
    • Ill-posed problems in the natural sciences
    • Bloch M.(transl.), Moscow: MIR Publishers
    • Tikhonov A N, Goncharsky A V. Ill-posed problems in the natural sciences. Translated from Russian by Bloch M, Moscow: MIR Publishers, 1987
    • (1987)
    • Tikhonov, A.N.1    Goncharsky, A.V.2
  • 21
    • 24044515976 scopus 로고    scopus 로고
    • On a kernel-based method for pattern recognition, regression, approximation, and operator inversion
    • Smola A J, Scholkopf B. On a kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica, 1998, 22(1-2): 211-231
    • (1998) Algorithmica , vol.22 , Issue.1-2 , pp. 211-231
    • Smola, A.J.1    Scholkopf, B.2
  • 22
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A J, Scholkopf B, Muller K-R. The connection between regularization operators and support vector kernels. Neural Networks, 1998, 11(4): 637-649
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.-R.3
  • 23
    • 0034151613 scopus 로고    scopus 로고
    • Second order learning algorithm with squared penalty term
    • Saito K, Nakano R. Second order learning algorithm with squared penalty term. Neural Computation, 2000, 12(3): 709-729
    • (2000) Neural Computation , vol.12 , Issue.3 , pp. 709-729
    • Saito, K.1    Nakano, R.2
  • 24
    • 0011489095 scopus 로고    scopus 로고
    • Linear discriminant and support vector classifiers
    • Smola A.J., Bartlett P., Scholkopf B. and Schuurmans C.(ed.), MIT Press
    • Guyon I, Stork D G. Linear discriminant and support vector classifiers. In: Smola A J, Bartlett P, Scholkopf B, Schuurmans C, editors (2000). Advances in Large Margin Classifiers, MIT Press, 2000
    • (2000) Advances in Large Margin Classifiers
    • Guyon, I.1    Stork, D.G.2
  • 25
    • 0025056697 scopus 로고
    • Regularization algorithm for learning that are equivalent to multi-layer networks
    • Poggio T, Girosi F. Regularization algorithm for learning that are equivalent to multi-layer networks. Science, 1990, 247(23): 978-982
    • (1990) Science , vol.247 , Issue.23 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 26
    • 0027659357 scopus 로고
    • Curvature driven smoothing: A learning algorithm for feedforward networks
    • Bishop C M. Curvature driven smoothing: a learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 1993, 4(5): 882-884
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 882-884
    • Bishop, C.M.1
  • 28
    • 0030130724 scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Networks, 1992, 9(3): 509-521
    • (1992) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 29
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 30
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • Mackay D J C. A practical Bayesian framework for back-propagation networks. Neural Computation, 1992, 4(3): 448-472
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 31
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 32
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • Scholkopf B., Burges C.J.C. and Smola A.J.(ed.), Cambridge, MA: MIT Press
    • Wahba G. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In: Scholkopf B, Burges C J C, Smola A J, editors, Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999. 69-88
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 33
    • 0003798635 scopus 로고    scopus 로고
    • An introduction to support vector machines and other kernel-based learning methods
    • Cambridge UK: Cambridge University Press
    • Cristianini N, Taylor J S. An introduction to support vector machines and other kernel-based learning methods. Cambridge UK: Cambridge University Press, 2000
    • (2000)
    • Cristianini, N.1    Taylor, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.