-
4
-
-
0041698202
-
The use of an adaptive threshold element to design a linear optimal pattern classifier
-
Koford J S, Groner G F. The use of an adaptive threshold element to design a linear optimal pattern classifier. IEEE Transactions on Information Theory, 1966, 12(1): 42-50
-
(1966)
IEEE Transactions on Information Theory
, vol.12
, Issue.1
, pp. 42-50
-
-
Koford, J.S.1
Groner, G.F.2
-
7
-
-
34249753618
-
Support vector networks
-
Cortes C, Vapnik V N. Support vector networks. Machine Learning, 1995, 20(3): 273-297
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
10
-
-
0002343859
-
Introduction to statistical learning theory and support vector machines
-
Chinese source
-
Zhang Xue-Gong. Introduction to statistical learning theory and support vector machines. Acta Automatica Sinica, 2000, 26(1): 32-44 (in Chinese)
-
(2000)
Acta Automatica Sinica
, vol.26
, Issue.1
, pp. 32-44
-
-
Zhang, X.-G.1
-
11
-
-
84956689194
-
Kernel principal component analysis
-
Springer Lecture Notes in Computer Science
-
Scholkopf B, Smola A, Muller K-R. Kernel principal component analysis. In Proceedings ICANN'97, Springer Lecture Notes in Computer Science, 1997. 583-589
-
(1997)
Proceedings ICANN'97
, pp. 583-589
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
12
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Scholkopf B, Smola A, Muller K-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
13
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
New York: IEEE Press
-
Mika S, Ratsch G, Weston J, Scholkopf B, Muller K-R. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX, New York: IEEE Press, 1999. 41-48
-
(1999)
Neural Networks for Signal Processing IX
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Scholkopf, B.4
Muller, K.-R.5
-
14
-
-
0035272287
-
An introduction to kernel-based learning algorithm
-
Muller K-R, Mika S, Ratsch G, Scholkopf B. An introduction to kernel-based learning algorithm. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.-R.1
Mika, S.2
Ratsch, G.3
Scholkopf, B.4
-
18
-
-
0034863533
-
Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR
-
Washington DC, USA: IEEE Press
-
Xu J, Zhang X, Li Y. Kernel MSE algorithm: A unified framework for KFD, LS-SVM and KRR. In: International Joint Conference on Neural Networks 2001. Washington DC, USA: IEEE Press, 2001. 1486-1491
-
(2001)
International Joint Conference on Neural Networks 2001
, pp. 1486-1491
-
-
Xu, J.1
Zhang, X.2
Li, Y.3
-
19
-
-
0003664883
-
Solution of ill-posed problem
-
Washington DC: Winston and Sons
-
Tikhonov A N, Arsenin V Y. Solution of ill-posed problem. Washington DC: Winston and Sons, 1977
-
(1977)
-
-
Tikhonov, A.N.1
Arsenin, V.Y.2
-
20
-
-
0004021371
-
Ill-posed problems in the natural sciences
-
Bloch M.(transl.), Moscow: MIR Publishers
-
Tikhonov A N, Goncharsky A V. Ill-posed problems in the natural sciences. Translated from Russian by Bloch M, Moscow: MIR Publishers, 1987
-
(1987)
-
-
Tikhonov, A.N.1
Goncharsky, A.V.2
-
21
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation, and operator inversion
-
Smola A J, Scholkopf B. On a kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica, 1998, 22(1-2): 211-231
-
(1998)
Algorithmica
, vol.22
, Issue.1-2
, pp. 211-231
-
-
Smola, A.J.1
Scholkopf, B.2
-
22
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola A J, Scholkopf B, Muller K-R. The connection between regularization operators and support vector kernels. Neural Networks, 1998, 11(4): 637-649
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Scholkopf, B.2
Muller, K.-R.3
-
23
-
-
0034151613
-
Second order learning algorithm with squared penalty term
-
Saito K, Nakano R. Second order learning algorithm with squared penalty term. Neural Computation, 2000, 12(3): 709-729
-
(2000)
Neural Computation
, vol.12
, Issue.3
, pp. 709-729
-
-
Saito, K.1
Nakano, R.2
-
24
-
-
0011489095
-
Linear discriminant and support vector classifiers
-
Smola A.J., Bartlett P., Scholkopf B. and Schuurmans C.(ed.), MIT Press
-
Guyon I, Stork D G. Linear discriminant and support vector classifiers. In: Smola A J, Bartlett P, Scholkopf B, Schuurmans C, editors (2000). Advances in Large Margin Classifiers, MIT Press, 2000
-
(2000)
Advances in Large Margin Classifiers
-
-
Guyon, I.1
Stork, D.G.2
-
25
-
-
0025056697
-
Regularization algorithm for learning that are equivalent to multi-layer networks
-
Poggio T, Girosi F. Regularization algorithm for learning that are equivalent to multi-layer networks. Science, 1990, 247(23): 978-982
-
(1990)
Science
, vol.247
, Issue.23
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
26
-
-
0027659357
-
Curvature driven smoothing: A learning algorithm for feedforward networks
-
Bishop C M. Curvature driven smoothing: a learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 1993, 4(5): 882-884
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.5
, pp. 882-884
-
-
Bishop, C.M.1
-
28
-
-
0030130724
-
Structural learning with forgetting
-
Ishikawa M. Structural learning with forgetting. Neural Networks, 1992, 9(3): 509-521
-
(1992)
Neural Networks
, vol.9
, Issue.3
, pp. 509-521
-
-
Ishikawa, M.1
-
29
-
-
0001025418
-
Bayesian interpolation
-
Mackay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
Mackay, D.J.C.1
-
30
-
-
0002704818
-
A practical Bayesian framework for back-propagation networks
-
Mackay D J C. A practical Bayesian framework for back-propagation networks. Neural Computation, 1992, 4(3): 448-472
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
Mackay, D.J.C.1
-
31
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P.M.1
-
32
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
-
Scholkopf B., Burges C.J.C. and Smola A.J.(ed.), Cambridge, MA: MIT Press
-
Wahba G. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In: Scholkopf B, Burges C J C, Smola A J, editors, Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999. 69-88
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
33
-
-
0003798635
-
An introduction to support vector machines and other kernel-based learning methods
-
Cambridge UK: Cambridge University Press
-
Cristianini N, Taylor J S. An introduction to support vector machines and other kernel-based learning methods. Cambridge UK: Cambridge University Press, 2000
-
(2000)
-
-
Cristianini, N.1
Taylor, J.S.2
|