-
4
-
-
33947090861
-
-
(b) Dayal, S. K.; Ehrenson, S.; Taft, R. W. J. Am. Chem. Soc. 1972, 94, 9113.
-
(1972)
J. Am. Chem. Soc.
, vol.94
, pp. 9113
-
-
Dayal, S.K.1
Ehrenson, S.2
Taft, R.W.3
-
6
-
-
0033518558
-
-
Richard, J. P.; Williams, G.; Gao, J. J. Am. Chem. Soc. 1999, 121, 715.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 715
-
-
Richard, J.P.1
Williams, G.2
Gao, J.3
-
9
-
-
0000576324
-
-
Le Questel, J.-Y.; Berthelot, M.; Laurence, C. J. Phys. Org. Chem. 2000, 13, 347. The bond length is the mean of the CN distance obtained from 5059 nitriles in the Cambridge Structural Database.
-
(2000)
J. Phys. Org. Chem.
, vol.13
, pp. 347
-
-
Le Questel, J.-Y.1
Berthelot, M.2
Laurence, C.3
-
10
-
-
2542514849
-
-
(a) Sott, R.; Granander, J.; Hilmersson, G. J. Am. Chem. Soc. 2004, 126, 6798.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 6798
-
-
Sott, R.1
Granander, J.2
Hilmersson, G.3
-
12
-
-
0001686345
-
-
(c) Carlier, P. R.; Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1994, 116, 11602.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 11602
-
-
Carlier, P.R.1
Lucht, B.L.2
Collum, D.B.3
-
13
-
-
0000609569
-
-
The sole exception is a structurally biased lithiated cyclopropanecarbonitrile, where N and C coordination occur in a polymeric ladder structure: Boche, G.; Harms, K.; Marsch, M. J. Am. Chem. Soc. 1988, 110, 6925.
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 6925
-
-
Boche, G.1
Harms, K.2
Marsch, M.3
-
14
-
-
33845375095
-
-
For computed structural differences in the extent of C and N coordination for lithiated, sodiated, and magnesiated acetonitrile, see: Kaneti, J.; Schleyer, P. V. R.; Clark, T.; Kos, A. J.; Spitznagel, G. W.; Andrade, J. G.; Moffat, J. B. J. Am. Chem. Soc. 1986, 108, 1481.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 1481
-
-
Kaneti, J.1
Schleyer, P.V.R.2
Clark, T.3
Kos, A.J.4
Spitznagel, G.W.5
Andrade, J.G.6
Moffat, J.B.7
-
15
-
-
0037134866
-
-
For C-metalated nitriles, see: (a) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S.-I. J. Am. Chem. Soc. 2002, 124, 6842.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 6842
-
-
Naota, T.1
Tannna, A.2
Kamuro, S.3
Murahashi, S.-I.4
-
16
-
-
0034728564
-
-
(b) Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem. Soc. 2000, 122, 2960.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 2960
-
-
Naota, T.1
Tannna, A.2
Murahashi, S.-I.3
-
17
-
-
0034651472
-
-
(c) Alburquerque, P. R.; Pinhas, A. R.; Krause Bauer, J. A. Inorg. Chim. Acta 2000, 298, 239.
-
(2000)
Inorg. Chim. Acta
, vol.298
, pp. 239
-
-
Alburquerque, P.R.1
Pinhas, A.R.2
Krause Bauer, J.A.3
-
18
-
-
0000175562
-
-
(d) Ruiz, J.; Rodríguez, V.; López, G.; Casabó, J.; Molins, E.; Miravitlles, C. Organometatlics 1999, 18, 1177.
-
(1999)
Organometatlics
, vol.18
, pp. 1177
-
-
Ruiz, J.1
Rodríguez, V.2
López, G.3
Casabó, J.4
Molins, E.5
Miravitlles, C.6
-
19
-
-
0000632266
-
-
(e) Ragaini, F.; Porta, F.; Fumagalli, A.; Demartin, F. Organometattics 1991, 10, 3785.
-
(1991)
Organometattics
, vol.10
, pp. 3785
-
-
Ragaini, F.1
Porta, F.2
Fumagalli, A.3
Demartin, F.4
-
20
-
-
0000497665
-
-
(f) Porta, F.; Ragaini, F.; Cenini, S.; Demartin, F. Organometallics 1990, 9, 929.
-
(1990)
Organometallics
, vol.9
, pp. 929
-
-
Porta, F.1
Ragaini, F.2
Cenini, S.3
Demartin, F.4
-
21
-
-
0343969469
-
-
(g) Ko, J. J.; Bockman, T. M.; Kochi, J. K. Organometallics 1990, 9, 1833.
-
(1990)
Organometallics
, vol.9
, pp. 1833
-
-
Ko, J.J.1
Bockman, T.M.2
Kochi, J.K.3
-
23
-
-
37049099277
-
-
(i) Del Pra, A.; Forsellini, E.; Bombieri, G.; Michelin, R. A.; Ros, R. J. Chem. Soc., Dalton Trans. 1979, 1862.
-
(1979)
J. Chem. Soc., Dalton Trans.
, pp. 1862
-
-
Del Pra, A.1
Forsellini, E.2
Bombieri, G.3
Michelin, R.A.4
Ros, R.5
-
24
-
-
37049107708
-
-
(j) Lenarda, M.; Pahor, N. B.; Calligaris, M.; Graziani, M.; Randaccio, L. J. Chem. Soc., Chem. Commun. 1978, 279.
-
(1978)
J. Chem. Soc., Chem. Commun.
, vol.279
-
-
Lenarda, M.1
Pahor, N.B.2
Calligaris, M.3
Graziani, M.4
Randaccio, L.5
-
25
-
-
0006426165
-
-
(k) Schlodder, R.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Am. Chem. Soc. 1974, 96, 6893.
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 6893
-
-
Schlodder, R.1
Ibers, J.A.2
Lenarda, M.3
Graziani, M.4
-
26
-
-
0007882537
-
-
Yarrow, D. J.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Organomet. Chem. 1974, 70, 133.
-
(1974)
J. Organomet. Chem.
, vol.70
, pp. 133
-
-
Yarrow, D.J.1
Ibers, J.A.2
Lenarda, M.3
Graziani, M.4
-
27
-
-
0034008787
-
-
For N-metalated nitriles, see: (m) Tanabe, Y.; Seino, H.; Ishii, Y.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 1690.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 1690
-
-
Tanabe, Y.1
Seino, H.2
Ishii, Y.3
Hidai, M.4
-
28
-
-
0033915260
-
-
(n) Murahashi, S.-I.; Take, K.; Naota, T.; Takaya, H. Synlett 2000, 1016-1018.
-
(2000)
Synlett
, pp. 1016-1018
-
-
Murahashi, S.-I.1
Take, K.2
Naota, T.3
Takaya, H.4
-
29
-
-
0033556019
-
-
(o) Triki, S.; Pala, J. S.; Decoster, M.; Molinié, P.; Toupet, L. Angew. Chem., Int. Ed. 1999, 38, 113.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 113
-
-
Triki, S.1
Pala, J.S.2
Decoster, M.3
Molinié, P.4
Toupet, L.5
-
30
-
-
33749093359
-
-
(p) Hirano, M.; Takenaka, A.; Mizuho, Y.; Hiraoka, M.; Komiya, S. J. Chem. Soc., Dalton Trans. 1999, 3209.
-
(1999)
J. Chem. Soc., Dalton Trans.
, pp. 3209
-
-
Hirano, M.1
Takenaka, A.2
Mizuho, Y.3
Hiraoka, M.4
Komiya, S.5
-
31
-
-
0001024204
-
-
(q) Yates, M. L.; Arif, A. M.; Manson, J. L.; Kalm, B. A.; Burkhart, B. M.; Miller, J. S. Inorg. Chem. 1998, 37, 840.
-
(1998)
Inorg. Chem.
, vol.37
, pp. 840
-
-
Yates, M.L.1
Arif, A.M.2
Manson, J.L.3
Kalm, B.A.4
Burkhart, B.M.5
Miller, J.S.6
-
32
-
-
0005937022
-
-
(r) Jäger, L.; Tretner, C.; Hartung, H.; Biedermann, M. Chem. Ber. 1997, 130, 1007.
-
(1997)
Chem. Ber.
, vol.130
, pp. 1007
-
-
Jäger, L.1
Tretner, C.2
Hartung, H.3
Biedermann, M.4
-
33
-
-
0030455402
-
-
(s) Zhao, H.; Heintz, R. A.; Dunbar, K. R. J. Am. Chem. Soc. 1996, 118, 12844.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 12844
-
-
Zhao, H.1
Heintz, R.A.2
Dunbar, K.R.3
-
34
-
-
15844412400
-
-
(t) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12436
-
-
Murahashi, S.-I.1
Naota, T.2
Taki, H.3
Mizuno, M.4
Takaya, H.5
Komiya, S.6
Mizuho, Y.7
Oyasato, N.8
Hiraoka, M.9
Hirano, M.10
Fukuoka, A.11
-
35
-
-
0002190740
-
-
(u) Hirano, M.; Ito, Y.; Hirai, M.; Fukuoka, A.; Komiya, S. Chem. Lett. 1993, 2057.
-
(1993)
Chem. Lett.
, pp. 2057
-
-
Hirano, M.1
Ito, Y.2
Hirai, M.3
Fukuoka, A.4
Komiya, S.5
-
39
-
-
0034728564
-
-
For an analogous interconversion of ruthenium complexes, see: Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem. Soc. 2000, 122, 2960.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 2960
-
-
Naota, T.1
Tannna, A.2
Murahashi, S.-I.3
-
40
-
-
0035904251
-
-
Kujime, M.; Hikichi, S.; Akita, M. Organometallics 2001, 20, 4049.
-
(2001)
Organometallics
, vol.20
, pp. 4049
-
-
Kujime, M.1
Hikichi, S.2
Akita, M.3
-
41
-
-
18744411274
-
-
(a) Fleming, F. F.; Gudipati, S.; Zhang, Z.; Liu, W.; Steward, O. W. J. Org. Chem. 2005, 70, 3845.
-
(2005)
J. Org. Chem.
, vol.70
, pp. 3845
-
-
Fleming, F.F.1
Gudipati, S.2
Zhang, Z.3
Liu, W.4
Steward, O.W.5
-
42
-
-
15444369069
-
-
(b) Fleming, F. F.; Zhang, Z.; Liu, W.; Knochel, P. J. Org. Chem. 2005, 70, 2200.
-
(2005)
J. Org. Chem.
, vol.70
, pp. 2200
-
-
Fleming, F.F.1
Zhang, Z.2
Liu, W.3
Knochel, P.4
-
43
-
-
0037054157
-
-
(c) Thibonnet, J.; Vu, V. A.; Berillon, L.; Knochel, P. Tetrahedron 2002, 58, 4787.
-
(2002)
Tetrahedron
, vol.58
, pp. 4787
-
-
Thibonnet, J.1
Vu, V.A.2
Berillon, L.3
Knochel, P.4
-
47
-
-
0001732026
-
-
Bare, T. H.; Hershey, N. D.; House, H. O.; Swain, C. G. J. Org. Chem. 1972, 37, 997.
-
(1972)
J. Org. Chem.
, vol.37
, pp. 997
-
-
Bare, T.H.1
Hershey, N.D.2
House, H.O.3
Swain, C.G.4
-
48
-
-
13844297054
-
-
For a preliminary account, see: Fleming, F. F.; Zhang, Z.; Wei, G.; Steward, O. W. Org. Lett. 2005, 7, 447.
-
(2005)
Org. Lett.
, vol.7
, pp. 447
-
-
Fleming, F.F.1
Zhang, Z.2
Wei, G.3
Steward, O.W.4
-
49
-
-
0003961355
-
-
Pergamon: Amsterdam, The Netherlands; Chapter 6
-
For an excellent discussion of electrophile-dependent alkylations of chiral organolithiums, see: Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Amsterdam, The Netherlands, 2002; Chapter 6.
-
(2002)
Organolithiums: Selectivity for Synthesis
-
-
Clayden, J.1
-
50
-
-
0037124691
-
-
2, see: Zhang, M.-X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002, 41, 2169.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 2169
-
-
Zhang, M.-X.1
Eaton, P.E.2
-
53
-
-
33644545230
-
-
(c) For an exception, see: Fauvarque, J.-F.; Meklati, B.; Dearing, C. C. R. Chim. 1968, 267, 1162.
-
(1968)
R. Chim.
, vol.267
, pp. 1162
-
-
Fauvarque, J.-F.1
Meklati, B.2
Dearing, C.C.3
-
54
-
-
33644531125
-
-
For the deprotonation of phenyl acetonitrile, see: (a) Ivanov, C.; Markov, P.; Arnaudov, M. Chem. Ber. 1967, 100, 690.
-
(1967)
Chem. Ber.
, vol.100
, pp. 690
-
-
Ivanov, C.1
Markov, P.2
Arnaudov, M.3
-
55
-
-
84957132251
-
-
(b) Ivanov, C.; Markov, P.; Arnaudov, M. Chem. Ber. 1964, 97, 2987.
-
(1964)
Chem. Ber.
, vol.97
, pp. 2987
-
-
Ivanov, C.1
Markov, P.2
Arnaudov, M.3
-
56
-
-
0000717185
-
-
(a) Swiss, K. A.; Liotta, D. C.; Maryanoff, C. A. J. Am. Chem. Soc. 1990, 112, 9393.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 9393
-
-
Swiss, K.A.1
Liotta, D.C.2
Maryanoff, C.A.3
-
58
-
-
33644501627
-
-
note
-
Cyclic nitrile 9a can be prepared through the conjugate addition of MeMgCl to 3-hydroxy-3-methylcyclohex-1-enecarbonitrile or more conveniently, by sequential 1,2-1,4 addition to oxonitrile 14 (vide infra).
-
-
-
-
59
-
-
0037162656
-
-
Fleming, F. F.; Wang, Q.; Zhang, Z.; Steward, O. W. J. Org. Chem. 2002, 67, 5953.
-
(2002)
J. Org. Chem.
, vol.67
, pp. 5953
-
-
Fleming, F.F.1
Wang, Q.2
Zhang, Z.3
Steward, O.W.4
-
62
-
-
33644513564
-
-
note
-
1H NMR analysis of the crude reaction mixture failed to identify any of the diastereomer 9b.
-
-
-
-
63
-
-
4544304795
-
-
Fleming, F. F.; Zhang, Z.; Wang, Q.; Steward, O. W. Angew. Chem., Int. Ed. 2004, 43, 1126.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 1126
-
-
Fleming, F.F.1
Zhang, Z.2
Wang, Q.3
Steward, O.W.4
-
65
-
-
0037764896
-
-
Fleming, F. F.; Wang, Q.; Steward, O. W. J. Org. Chem. 2003, 68, 4235.
-
(2003)
J. Org. Chem.
, vol.68
, pp. 4235
-
-
Fleming, F.F.1
Wang, Q.2
Steward, O.W.3
-
66
-
-
85080848774
-
-
Electrophile-dependent alkylations are relatively rare but often occur with chiral, tertiary, benzylic and allylic organolithiums. Collectively, the occurrence of electrophile-dependent stereoselectivity implies the intermediacy of a chiral organometallic intermediate, in this case, the asymmetric C-magnesiated nitrile 11. (a) Basu, A.; Thayumanavan, S. Angew. Chem., Int. Ed. 2002, 41, 717.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 717
-
-
Basu, A.1
Thayumanavan, S.2
-
67
-
-
33644560805
-
-
Wiley: New York: Chapter 1
-
The Mg-O bond exhibits considerable back-bonding, which dramatically reduces the Lewis acidity of the metal, making prior coordination with the electrophile unlikely: Richey, H. G. Grignard Reagents: New Developments; Wiley: New York, 2000: Chapter 1. p 4.
-
(2000)
Grignard Reagents: New Developments
, pp. 4
-
-
Richey, H.G.1
-
70
-
-
0011316776
-
-
For an excellent discussion of the mechanism of these formally forbidden alkylations, see: Hill, E. A. J. Organomet. Chem. 1975, 91, 123.
-
(1975)
J. Organomet. Chem.
, vol.91
, pp. 123
-
-
Hill, E.A.1
-
71
-
-
33644510614
-
-
note
-
The attempted oxidation of 9k afforded the cyclic ether 9o, presumably by the ionization of an activated cyclopropyl alcohol, followed by an internal cyclization, as shown below.
-
-
-
-
74
-
-
0033522843
-
-
For an excellent overview of terms, steric constraints, and orbital overlap, see: Gawley, R. E. Tetrahedron Lett. 1999, 40, 4297.
-
(1999)
Tetrahedron Lett.
, vol.40
, pp. 4297
-
-
Gawley, R.E.1
-
75
-
-
33644556308
-
-
note
-
An analogous alkylation of 11a with 4-bromobutene similarly affords only 22% of the corresponding alkylated nitriles 9r and 13r, with the protonated nitriles 9a and 13a predominating. (diagram presented)
-
-
-
-
76
-
-
33644509067
-
-
note
-
inv) attack (cf. 11a′).
-
-
-
-
77
-
-
0012395447
-
-
For SET reactions of metalated nitriles, see: (a) Werry, J.; Stamm, H.; Sommer, A. Chem. Ber. 1990, 123, 1553.
-
(1990)
Chem. Ber.
, vol.123
, pp. 1553
-
-
Werry, J.1
Stamm, H.2
Sommer, A.3
-
78
-
-
1342306899
-
-
(b) Roux-Schmitt, M.-C.; Pettit, A.; Sevin, A.; Seyden-Penne, J.; Anh, N. T. Tetrahedron 1990, 46, 1263.
-
(1990)
Tetrahedron
, vol.46
, pp. 1263
-
-
Roux-Schmitt, M.-C.1
Pettit, A.2
Sevin, A.3
Seyden-Penne, J.4
Anh, N.T.5
-
79
-
-
37049096532
-
-
(c) Chauffaille, J.; Hebert, E.; Welvart, Z. J. Chem. Soc., Perkin Trans. 2 1982, 1645.
-
(1982)
Chem. Soc., Perkin Trans. 2
, pp. 1645
-
-
Chauffaille, J.1
Hebert, E.2
Welvart, Z.J.3
-
80
-
-
33644520116
-
-
Richey, H. G., Jr., Ed.; Wiley: Chichester, England, Chapter 1
-
For SET reactions of Grignard reagents, see: (d) Hill, E. A. In Grignard Reagents: New Developments; Richey, H. G., Jr., Ed.; Wiley: Chichester, England, 2000; Chapter 1, pp 43-45.
-
(2000)
Grignard Reagents: New Developments
, pp. 43-45
-
-
Hill, E.A.1
-
81
-
-
33644537833
-
-
note
-
No alkylation of 11a is observed with the less reactive, but commercially available, cyclopropylmethyl bromide.
-
-
-
-
82
-
-
0034639903
-
-
Gawley, R. E.; Low, E.; Zhang, Q.; Harris, R. J. Am. Chem. Soc. 2000, 122, 3344.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 3344
-
-
Gawley, R.E.1
Low, E.2
Zhang, Q.3
Harris, R.4
-
83
-
-
0000163991
-
-
N2″ alkylation: Alnajjar, M. S.; Smith, G. F.; Kuivila, H. G. J. Org. Chem. 1984, 49, 1271.
-
(1984)
J. Org. Chem.
, vol.49
, pp. 1271
-
-
Alnajjar, M.S.1
Smith, G.F.2
Kuivila, H.G.3
-
84
-
-
33644520730
-
-
note
-
18 the use of low titre MeMgCl afforded almost exclusively the cyclopropylnitriles 9q and 13q (53%) and only a trace amount of the butenylnitriles 9r and 13r. Presumably, the presence of alkoxide species causes a change in the nature of the reactive magnesiated nitrile, which has minimal propensity toward SET.
-
-
-
-
85
-
-
33644502369
-
-
note
-
No alkylation was observed between 11a and DMF, methyl benzoate, or dimethyl carbonate.
-
-
-
-
86
-
-
0000526031
-
-
Control experiments, in which the temperature was raised to room temperature, cause equilibration of the intermediate alkoxy nitrile, whereas quenching the reaction at -78 °C retains the stereochemical integrity of the first-formed alkoxy nitriles: Carlier, P. R.; Lo, C. W.-S.; Lo, M. M.-C.; Wan, N. C.; Williams, I. D. Org. Lett. 2000, 2, 2443. For example, in the alkylation of 11a with cyclopropanecarboxaldehyde, elevating the reaction to ambient temperature causes an equilibration to a mixture of nitriles 9k and 13k and two diastereomeric lactones, iii. Presumably, higher temperatures facilitate not only retro-aldol fragmentation but also attack of the adjacent magnesium alkoxide onto the nitrile to generate ii, which hydrolyzes to iii. (diagram presented)
-
(2000)
Org. Lett.
, vol.2
, pp. 2443
-
-
Carlier, P.R.1
Lo, C.W.-S.2
Lo, M.M.-C.3
Wan, N.C.4
Williams, I.D.5
-
87
-
-
0003688714
-
-
Springer-Verlag: Berlin
-
-1: Pretsch, E.; Seibl, J.; Simon, W.; Clerc, T. Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd ed.; Springer-Verlag: Berlin, 1989; p 1125.
-
(1989)
Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd Ed.
, pp. 1125
-
-
Pretsch, E.1
Seibl, J.2
Simon, W.3
Clerc, T.4
-
88
-
-
0001608912
-
-
For general experimental procedures, see: Fleming, F. F.; Hussain, Z.; Weaver, D.; Norman, R. E. J. Org. Chem. 1997, 62, 1305.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 1305
-
-
Fleming, F.F.1
Hussain, Z.2
Weaver, D.3
Norman, R.E.4
|