메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 135-150

Sample size calculations based on generalized estimating equations for population pharmacokinetic experiments

Author keywords

GEE; Mixed effects modeling; Nonlinear models; Pharmacokinetics; Power; Sample size

Indexed keywords

ARTICLE; BLOOD SAMPLING; CALCULATION; HUMAN; MONTE CARLO METHOD; PRIORITY JOURNAL; RANDOMIZATION; SAMPLE SIZE; STATISTICAL ANALYSIS;

EID: 32844466264     PISSN: 10543406     EISSN: 15205711     Source Type: Journal    
DOI: 10.1080/10543400500508705     Document Type: Article
Times cited : (18)

References (26)
  • 1
    • 0036705010 scopus 로고    scopus 로고
    • Commentary on significance levels for covariate effects in NONMEM
    • Beal, S. L. (2002). Commentary on significance levels for covariate effects in NONMEM. J. Phamacokinet. Pharmacodyn. 29(4):403-410.
    • (2002) J. Phamacokinet. Pharmacodyn. , vol.29 , Issue.4 , pp. 403-410
    • Beal, S.L.1
  • 5
    • 0036096120 scopus 로고    scopus 로고
    • The use of simulated annealing for finding optimal population designs
    • Duffull, S. B., Retout, S., Mentré, F. (2002). The use of simulated annealing for finding optimal population designs. Comput. Methods Programs Biomed. 69(1):25-35.
    • (2002) Comput. Methods Programs Biomed. , vol.69 , Issue.1 , pp. 25-35
    • Duffull, S.B.1    Retout, S.2    Mentré, F.3
  • 6
    • 0037739710 scopus 로고    scopus 로고
    • Sample size estimation for GEE method for comparing slopes in repeated measurements data
    • Jung, S. H., Ahn, C. (2003). Sample size estimation for GEE method for comparing slopes in repeated measurements data. Stat. Med. 22(8):1305-1315.
    • (2003) Stat. Med. , vol.22 , Issue.8 , pp. 1305-1315
    • Jung, S.H.1    Ahn, C.2
  • 7
    • 4344613538 scopus 로고    scopus 로고
    • A sample size computation method for nonlinear mixed effects models with applications to pharmacokinetic models
    • Kang, D., Schwartz, J. B., Verotta, D. (2004). A sample size computation method for nonlinear mixed effects models with applications to pharmacokinetic models. Stat. Med. 23(16):2551-2566.
    • (2004) Stat. Med. , vol.23 , Issue.16 , pp. 2551-2566
    • Kang, D.1    Schwartz, J.B.2    Verotta, D.3
  • 8
    • 0035863226 scopus 로고    scopus 로고
    • Design evaluation for a population pharmacokinetic study using clinical trial simulations: A case study
    • Kowalski, K. G., Hutmacher, M. M. (2001). Design evaluation for a population pharmacokinetic study using clinical trial simulations: a case study. Stat. Med. 20(1):75-91.
    • (2001) Stat. Med. , vol.20 , Issue.1 , pp. 75-91
    • Kowalski, K.G.1    Hutmacher, M.M.2
  • 9
    • 0035045467 scopus 로고    scopus 로고
    • Design and power of a population pharmacokinetic study
    • Lee, P. I. (2001). Design and power of a population pharmacokinetic study. Pharm. Res. 18(1):75-82.
    • (2001) Pharm. Res. , vol.18 , Issue.1 , pp. 75-82
    • Lee, P.I.1
  • 10
    • 0027217429 scopus 로고
    • Regression analysis for correlated data
    • Liang, K. Y., Zeger, S. L. (1993). Regression analysis for correlated data. Annu. Rev. Public Health 14:43-68.
    • (1993) Annu. Rev. Public Health , vol.14 , pp. 43-68
    • Liang, K.Y.1    Zeger, S.L.2
  • 11
    • 0037198998 scopus 로고    scopus 로고
    • Sample size and power determination for clustered repeated measurements
    • Liu, A., Shih, W. J., Gehan, E. (2002). Sample size and power determination for clustered repeated measurements. Stat. Med. 21(12):1787-1801.
    • (2002) Stat. Med. , vol.21 , Issue.12 , pp. 1787-1801
    • Liu, A.1    Shih, W.J.2    Gehan, E.3
  • 12
    • 0000963178 scopus 로고    scopus 로고
    • Optimal design in random-effects regression models
    • Mentré, F., Mallet, A., Baccar, D. (1997). Optimal design in random-effects regression models. Biometrika 84:429-442.
    • (1997) Biometrika , vol.84 , pp. 429-442
    • Mentré, F.1    Mallet, A.2    Baccar, D.3
  • 13
    • 0030770436 scopus 로고    scopus 로고
    • Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: Application in pharmacokinetics
    • Merle, Y., Mentré, F. (1997). Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: application in pharmacokinetics. Math. Biosci. 144(1):45-70.
    • (1997) Math. Biosci. , vol.144 , Issue.1 , pp. 45-70
    • Merle, Y.1    Mentré, F.2
  • 14
    • 0037278847 scopus 로고    scopus 로고
    • Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics
    • Retout, S., Mentré, F. (2003a). Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics. J. Biopharm. Stat. 13(2):209-227.
    • (2003) J. Biopharm. Stat. , vol.13 , Issue.2 , pp. 209-227
    • Retout, S.1    Mentré, F.2
  • 15
    • 1242269754 scopus 로고    scopus 로고
    • Optimization of individual and population designs using Splus
    • Retout, S., Mentré, F. (2003b). Optimization of individual and population designs using Splus. J. Pharmacokinet. Pharmacodyn. 30(6):417-443.
    • (2003) J. Pharmacokinet. Pharmacodyn. , vol.30 , Issue.6 , pp. 417-443
    • Retout, S.1    Mentré, F.2
  • 16
    • 0035107001 scopus 로고    scopus 로고
    • Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs
    • Retout, S., Duffull, S., Mentré, F. (2001). Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs. Comput. Methods Programs Biomed. 65(2):141-151.
    • (2001) Comput. Methods Programs Biomed. , vol.65 , Issue.2 , pp. 141-151
    • Retout, S.1    Duffull, S.2    Mentré, F.3
  • 17
    • 0037201007 scopus 로고    scopus 로고
    • Fisher information matrix for non-linear mixed-effects models: Evaluation and application for optimal design of enoxaparin population pharmacokinetics
    • Retout, S., Mentré, F., Bruno, R. (2002). Fisher information matrix for non-linear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics. Stat. Med. 21(18):2623-2639.
    • (2002) Stat. Med. , vol.21 , Issue.18 , pp. 2623-2639
    • Retout, S.1    Mentré, F.2    Bruno, R.3
  • 18
    • 0029450774 scopus 로고
    • Sample size calculations for repeated measures experiments
    • Rochon, J. (1995). Sample size calculations for repeated measures experiments. Control. Clin. Trials 16(6):449-452.
    • (1995) Control. Clin. Trials , vol.16 , Issue.6 , pp. 449-452
    • Rochon, J.1
  • 19
    • 0029938348 scopus 로고    scopus 로고
    • Analyzing bivariate repeated measures for discrete and continuous outcome variables
    • Rochon, J. (1996). Analyzing bivariate repeated measures for discrete and continuous outcome variables. Biometrics 52(2):740-750.
    • (1996) Biometrics , vol.52 , Issue.2 , pp. 740-750
    • Rochon, J.1
  • 20
    • 0032581451 scopus 로고    scopus 로고
    • Application of GEE procedures for sample size calculations in repeated measures experiments
    • Rochon, J. (1998). Application of GEE procedures for sample size calculations in repeated measures experiments. Stat. Med. 17(14):1643-1658.
    • (1998) Stat. Med. , vol.17 , Issue.14 , pp. 1643-1658
    • Rochon, J.1
  • 21
    • 4444219777 scopus 로고    scopus 로고
    • Power analyses for longitudinal trials and other clustered designs
    • Tu, X. M., Kowalski, J., Zhang, J., Lynch, K. G., Crits-Christoph, P. (2004). Power analyses for longitudinal trials and other clustered designs. Stat. Med. 23(18):2799-2815.
    • (2004) Stat. Med. , vol.23 , Issue.18 , pp. 2799-2815
    • Tu, X.M.1    Kowalski, J.2    Zhang, J.3    Lynch, K.G.4    Crits-Christoph, P.5
  • 22
    • 1842665163 scopus 로고    scopus 로고
    • Generalized least squares, Taylor series linearization and Fisher's scoring in multivariate nonlinear regression
    • Vonesh, E. F., Wang, H., Majumdar, D. (2001). Generalized least squares, Taylor series linearization and Fisher's scoring in multivariate nonlinear regression. Journal of the American Statistical Association 96(453):282-291.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.453 , pp. 282-291
    • Vonesh, E.F.1    Wang, H.2    Majumdar, D.3
  • 23
    • 0034954242 scopus 로고    scopus 로고
    • Assessment of actual significance levels for covariate effects in NONMEM
    • Wahlby, U., Jonsson, E. N., Karlsson, M. O. (2001). Assessment of actual significance levels for covariate effects in NONMEM. J. Pharmacokinet. Pharmacodyn. 28(3):231-252.
    • (2001) J. Pharmacokinet. Pharmacodyn. , vol.28 , Issue.3 , pp. 231-252
    • Wahlby, U.1    Jonsson, E.N.2    Karlsson, M.O.3
  • 24
    • 0027065552 scopus 로고
    • Evaluation of hypothesis testing for comparing two populations using NONMEM analysis
    • White, D. B., Walawander, C. A., Liu, D. Y., Grasela, T. H. (1992). Evaluation of hypothesis testing for comparing two populations using NONMEM analysis. J. Pharmacokinet. Biopharm. 20(3):295-313.
    • (1992) J. Pharmacokinet. Biopharm. , vol.20 , Issue.3 , pp. 295-313
    • White, D.B.1    Walawander, C.A.2    Liu, D.Y.3    Grasela, T.H.4
  • 25
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger, S. L., Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42(1):121-130.
    • (1986) Biometrics , vol.42 , Issue.1 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 26
    • 0027053029 scopus 로고
    • An overview of methods for the analysis of longitudinal data
    • Zeger, S. L., Liang, K. Y. (1992). An overview of methods for the analysis of longitudinal data. Stat. Med. 11(14-15):1825-1839.
    • (1992) Stat. Med. , vol.11 , Issue.14-15 , pp. 1825-1839
    • Zeger, S.L.1    Liang, K.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.