메뉴 건너뛰기




Volumn 43, Issue 18, 2004, Pages 2412-2415

Origin of diastereoselection in the hydrosilylation of chiral N-acylimmium intermediates derived from pyroglutamic acid

Author keywords

Diastereoselectivity; Hydrosilylation; Iminium intermediates; Transition states

Indexed keywords

AMINO ACIDS; SILICON;

EID: 3242882893     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/anie.200353366     Document Type: Article
Times cited : (11)

References (28)
  • 5
    • 0027492252 scopus 로고
    • N. Langlois, A. Rojas-Rousseau, O. Decavallas, Tetrahedron: Asymmetry 1996, 7, 1095; N. Langlois, A. Rojas, Tetrahedron 1993, 49, 77; T. Shono, T. Fujita, Y. Matsumura, Chem. Lett. 1991, 81.
    • (1993) Tetrahedron , vol.49 , pp. 77
    • Langlois, N.1    Rojas, A.2
  • 6
    • 0010515085 scopus 로고
    • N. Langlois, A. Rojas-Rousseau, O. Decavallas, Tetrahedron: Asymmetry 1996, 7, 1095; N. Langlois, A. Rojas, Tetrahedron 1993, 49, 77; T. Shono, T. Fujita, Y. Matsumura, Chem. Lett. 1991, 81.
    • (1991) Chem. Lett. , pp. 81
    • Shono, T.1    Fujita, T.2    Matsumura, Y.3
  • 12
    • 0025317376 scopus 로고
    • E. J. Corey, P.-W. Yuen, F. J. Hannon, D. A. Wierda, J. Org. Chem. 1990, 55, 784; M. Thaning, L.-G. Wistrand, Acta Chem. Scand. 1992, 46, 194.
    • (1992) Acta Chem. Scand. , vol.46 , pp. 194
    • Thaning, M.1    Wistrand, L.-G.2
  • 16
    • 0000745474 scopus 로고    scopus 로고
    • The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
    • (1999) Chem. Rev. , vol.99 , pp. 1243
    • Tomoda, S.1
  • 17
    • 0034640889 scopus 로고    scopus 로고
    • The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
    • (2000) Tetrahedron Lett. , vol.41 , pp. 4597
    • Tomoda, S.1    Zhang, J.2    Kaneno, D.3    Segi, M.4    Zhou, A.5
  • 18
    • 0034162653 scopus 로고    scopus 로고
    • The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
    • (2000) Heterocycles , vol.52 , pp. 1435
    • Tomoda, S.1    Kaneno, D.2    Senju, T.3
  • 19
    • 84961986737 scopus 로고    scopus 로고
    • The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
    • (2003) Tetrahedron Lett. , vol.44 , pp. 5931
    • Ikuta, Y.1    Tomoda, S.2
  • 20
    • 0141520473 scopus 로고    scopus 로고
    • The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
    • (2003) Org. Lett. , vol.5 , pp. 2947
    • Kaneno, D.1    Tomoda, S.2
  • 21
    • 84962359853 scopus 로고    scopus 로고
    • note
    • -1.
  • 25
    • 84962469710 scopus 로고    scopus 로고
    • note
    • -1, respectively. The geometries of the prereaction complexes for the anti and syn attack were located by the intrinsic reaction coordinate (IRC) calculations [HF/3-21G(d)] starting from anti-TS-I and syn-TS-I, respectively, followed by full optimization at the B3LYP/6-31G(d,p) level.
  • 27
    • 84962359859 scopus 로고    scopus 로고
    • note
    • -1 [B3LYP/6-311 + G(2d,p)], respectively.
  • 28
    • 0000563558 scopus 로고    scopus 로고
    • Intramolecular orbital interactions between the nonbonding orbitals on the carbonyl oxygen and the Group 14 metal-carbon antibonding orbitals are reported: K. Tani, S. Kato, T. Kanda, S. Inagaki, Org. Lett. 2001, 3, 655.
    • (2001) Org. Lett. , vol.3 , pp. 655
    • Tani, K.1    Kato, S.2    Kanda, T.3    Inagaki, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.