-
2
-
-
0037605171
-
-
C. Nájera, M. Yus, Tetrahedron: Asymmetry 1999, 10, 2245; M. Pichon, B. Figadère, Tetrahedron: Asymmetry 1996, 7, 927.
-
(1999)
Tetrahedron: Asymmetry
, vol.10
, pp. 2245
-
-
Nájera, C.1
Yus, M.2
-
3
-
-
0342995737
-
-
C. Nájera, M. Yus, Tetrahedron: Asymmetry 1999, 10, 2245; M. Pichon, B. Figadère, Tetrahedron: Asymmetry 1996, 7, 927.
-
(1996)
Tetrahedron: Asymmetry
, vol.7
, pp. 927
-
-
Pichon, M.1
Figadère, B.2
-
4
-
-
0029925463
-
-
N. Langlois, A. Rojas-Rousseau, O. Decavallas, Tetrahedron: Asymmetry 1996, 7, 1095; N. Langlois, A. Rojas, Tetrahedron 1993, 49, 77; T. Shono, T. Fujita, Y. Matsumura, Chem. Lett. 1991, 81.
-
(1996)
Tetrahedron: Asymmetry
, vol.7
, pp. 1095
-
-
Langlois, N.1
Rojas-Rousseau, A.2
Decavallas, O.3
-
5
-
-
0027492252
-
-
N. Langlois, A. Rojas-Rousseau, O. Decavallas, Tetrahedron: Asymmetry 1996, 7, 1095; N. Langlois, A. Rojas, Tetrahedron 1993, 49, 77; T. Shono, T. Fujita, Y. Matsumura, Chem. Lett. 1991, 81.
-
(1993)
Tetrahedron
, vol.49
, pp. 77
-
-
Langlois, N.1
Rojas, A.2
-
6
-
-
0010515085
-
-
N. Langlois, A. Rojas-Rousseau, O. Decavallas, Tetrahedron: Asymmetry 1996, 7, 1095; N. Langlois, A. Rojas, Tetrahedron 1993, 49, 77; T. Shono, T. Fujita, Y. Matsumura, Chem. Lett. 1991, 81.
-
(1991)
Chem. Lett.
, pp. 81
-
-
Shono, T.1
Fujita, T.2
Matsumura, Y.3
-
9
-
-
0027259227
-
-
c) T. Katoh, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, Tetrahedron Lett. 1993, 34, 5743;
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 5743
-
-
Katoh, T.1
Nagata, Y.2
Kobayashi, Y.3
Arai, K.4
Minami, J.5
Terashima, S.6
-
10
-
-
0002543115
-
-
d) H. Dhimane, C. V. Bacqué, L. Hamon, G. Lhommet, Eur. J. Org. Chem. 1998, 1955.
-
(1998)
Eur. J. Org. Chem.
, pp. 1955
-
-
Dhimane, H.1
Bacqué, C.V.2
Hamon, L.3
Lhommet, G.4
-
11
-
-
0025317376
-
-
E. J. Corey, P.-W. Yuen, F. J. Hannon, D. A. Wierda, J. Org. Chem. 1990, 55, 784; M. Thaning, L.-G. Wistrand, Acta Chem. Scand. 1992, 46, 194.
-
(1990)
J. Org. Chem.
, vol.55
, pp. 784
-
-
Corey, E.J.1
Yuen, P.-W.2
Hannon, F.J.3
Wierda, D.A.4
-
12
-
-
0025317376
-
-
E. J. Corey, P.-W. Yuen, F. J. Hannon, D. A. Wierda, J. Org. Chem. 1990, 55, 784; M. Thaning, L.-G. Wistrand, Acta Chem. Scand. 1992, 46, 194.
-
(1992)
Acta Chem. Scand.
, vol.46
, pp. 194
-
-
Thaning, M.1
Wistrand, L.-G.2
-
13
-
-
0032793372
-
-
M. Oba, A. Miyakawa, K. Nishiyama, T. Terauchi, M. Kainosho, J. Org. Chem. 1999, 64, 9275; M. Oba, T. Terauchi, J. Hashimoto, T. Tanaka, K. Nishiyama, Tetrahedron Lett. 1997, 38, 5515.
-
(1999)
J. Org. Chem.
, vol.64
, pp. 9275
-
-
Oba, M.1
Miyakawa, A.2
Nishiyama, K.3
Terauchi, T.4
Kainosho, M.5
-
14
-
-
0030836339
-
-
M. Oba, A. Miyakawa, K. Nishiyama, T. Terauchi, M. Kainosho, J. Org. Chem. 1999, 64, 9275; M. Oba, T. Terauchi, J. Hashimoto, T. Tanaka, K. Nishiyama, Tetrahedron Lett. 1997, 38, 5515.
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 5515
-
-
Oba, M.1
Terauchi, T.2
Hashimoto, J.3
Tanaka, T.4
Nishiyama, K.5
-
15
-
-
84881454506
-
-
Gaussian, Inc., Pittsburgh, PA
-
Gaussian98 (Revision A.11.4), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
-
(1998)
Gaussian98 (Revision A.11.4)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery, J.A.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, I.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.G.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Head-Gordon, M.55
Replogle, E.S.56
Pople, J.A.57
more..
-
16
-
-
0000745474
-
-
The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
-
(1999)
Chem. Rev.
, vol.99
, pp. 1243
-
-
Tomoda, S.1
-
17
-
-
0034640889
-
-
The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
-
(2000)
Tetrahedron Lett.
, vol.41
, pp. 4597
-
-
Tomoda, S.1
Zhang, J.2
Kaneno, D.3
Segi, M.4
Zhou, A.5
-
18
-
-
0034162653
-
-
The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
-
(2000)
Heterocycles
, vol.52
, pp. 1435
-
-
Tomoda, S.1
Kaneno, D.2
Senju, T.3
-
19
-
-
84961986737
-
-
The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 5931
-
-
Ikuta, Y.1
Tomoda, S.2
-
20
-
-
0141520473
-
-
The EFOE model assumes that FMO extension (exterior frontier orbital electron density = EFOE density for LUMO or HOMO in the present cases) and reagent-accessible space (steric effects; π-plane-divided accessible space = PDAS value) outside the molecular surface (van der Waals surface) of the reactant should be the major factors of facial stereoselection. EFOE analysis was performed at the HF/6-31G(d) level with a lattice mesh of 0.1 au. Molecular surface was defined by Bondi's van der Waals radii. Integration of EFOE density was performed up to 10 au from the van der Waals surface. PDAS integration was performed up to 5 au from the van der Waals surface. S. Tomoda, Chem. Rev. 1999, 99, 1243; S. Tomoda, J. Zhang, D. Kaneno, M. Segi, A. Zhou, Tetrahedron Lett. 2000, 41, 4597; S. Tomoda, D. Kaneno, T. Senju, Heterocycles 2000, 52, 1435; Y. Ikuta, S. Tomoda, Tetrahedron Lett. 2003, 44, 5931; D. Kaneno, S. Tomoda, Org. Lett. 2003, 5, 2947.
-
(2003)
Org. Lett.
, vol.5
, pp. 2947
-
-
Kaneno, D.1
Tomoda, S.2
-
21
-
-
84962359853
-
-
note
-
-1.
-
-
-
-
22
-
-
84946893847
-
-
S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
-
(1981)
Chem. Phys.
, vol.55
, pp. 117
-
-
Miertus, S.1
Scrocco, E.2
Tomasi, J.3
-
23
-
-
0011083499
-
-
A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
-
(1988)
Chem. Rev.
, vol.88
, pp. 899
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
25
-
-
84962469710
-
-
note
-
-1, respectively. The geometries of the prereaction complexes for the anti and syn attack were located by the intrinsic reaction coordinate (IRC) calculations [HF/3-21G(d)] starting from anti-TS-I and syn-TS-I, respectively, followed by full optimization at the B3LYP/6-31G(d,p) level.
-
-
-
-
26
-
-
85005470381
-
-
J. A. Pople, A. P. Scott, M. W. Wong, L. Radom, Isr. J. Chem. 1993, 33, 345.
-
(1993)
Isr. J. Chem.
, vol.33
, pp. 345
-
-
Pople, J.A.1
Scott, A.P.2
Wong, M.W.3
Radom, L.4
-
27
-
-
84962359859
-
-
note
-
-1 [B3LYP/6-311 + G(2d,p)], respectively.
-
-
-
-
28
-
-
0000563558
-
-
Intramolecular orbital interactions between the nonbonding orbitals on the carbonyl oxygen and the Group 14 metal-carbon antibonding orbitals are reported: K. Tani, S. Kato, T. Kanda, S. Inagaki, Org. Lett. 2001, 3, 655.
-
(2001)
Org. Lett.
, vol.3
, pp. 655
-
-
Tani, K.1
Kato, S.2
Kanda, T.3
Inagaki, S.4
|