메뉴 건너뛰기




Volumn , Issue , 2004, Pages 509-514

A generalized maximum entropy approach to Bregman co-clustering and matrix approximation

Author keywords

Bregman divergences; Co clustering; Matrix Approximation

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; ERROR ANALYSIS; INFORMATION ANALYSIS; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; RANDOM PROCESSES;

EID: 12244261221     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014111     Document Type: Conference Paper
Times cited : (122)

References (11)
  • 1
    • 12244292367 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to bregman co-clustering and matrix approximation
    • UT, Austin
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. Technical Report UTCS TR04-24, UT, Austin, 2004.
    • (2004) Technical Report , vol.UTCS TR04-24
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Merugu, S.4    Modha, D.5
  • 4
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. M. Church. Biclustering of expression data. In ICMB, pages 93-103, 2000.
    • (2000) ICMB , pp. 93-103
    • Cheng, Y.1    Church, G.M.2
  • 5
    • 12244302673 scopus 로고    scopus 로고
    • Minimum sum squared residue co-clustering of gene expression data
    • H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum squared residue co-clustering of gene expression data. In SDM, 2004.
    • (2004) SDM
    • Cho, H.1    Dhillon, I.S.2    Guan, Y.3    Sra, S.4
  • 7
    • 0025595687 scopus 로고
    • Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems
    • I. Csiszar. Why least squares and maximum entropy? an axiomatic approach to inference for linear inverse problems. Annals of Statistics, 19:2032-2066, 1991.
    • (1991) Annals of Statistics , vol.19 , pp. 2032-2066
    • Csiszar, I.1
  • 8
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In KDD, pages 89-98, 2003.
    • (2003) KDD , pp. 89-98
    • Dhillon, I.1    Mallela, S.2    Modha, D.3
  • 10
    • 0344031459 scopus 로고    scopus 로고
    • Unsupervised learning from dyadic data
    • ICSI, Berkeley
    • T. Hofmann and J. Puzicha. Unsupervised learning from dyadic data. Technical Report TR-98-042, ICSI, Berkeley, 1998.
    • (1998) Technical Report , vol.TR-98-042
    • Hofmann, T.1    Puzicha, J.2
  • 11
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. L. Lee and S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001. 556-562.
    • (2001) NIPS , pp. 556-562
    • Lee, D.L.1    Seung, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.