메뉴 건너뛰기




Volumn , Issue , 2005, Pages 265-274

Sampling-based sequential subgroup mining

Author keywords

Prior knowledge; Sampling; Subgroup discovery

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; LEARNING SYSTEMS; SAMPLING; STATISTICAL METHODS;

EID: 32344437473     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1081870.1081902     Document Type: Conference Paper
Times cited : (19)

References (29)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Springer Verlag Berlin, Barcelona, Spain
    • P. Cunningham and J. Carney. Diversity versus Quality in Classification Ensembles Based on Feature Selection. In Proceedings of the 11th European Conference on Machine Learning (ECML 2000), pages 109-116. Springer Verlag Berlin, Barcelona, Spain, 2000.
    • (2000) Proceedings of the 11th European Conference on Machine Learning (ECML 2000) , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.R.2
  • 8
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, (28):337-374, 2000.
    • (2000) Annals of Statistics , Issue.28 , pp. 337-374
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning - Towards a better understanding of covering algorithms
    • J. Fürnkranz and P. Flach. ROC 'n' Rule Learning - Towards a Better Understanding of Covering Algorithms. Machine Learning, 58(1):39-77, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.2
  • 12
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, chapter 3, AAAI Press/The MIT Press, Menlo Park, California
    • W. Klösgen. Explora: A Multipattern and Multistrategy Discovery Assistant. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 3, pages 249-272. AAAI Press/The MIT Press, Menlo Park, California, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-272
    • Klösgen, W.1
  • 16
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to monte carlo methods
    • D. Mackay. Introduction To Monte Carlo Methods. In Learning in Graphical Models, pages 175-204. 1998.
    • (1998) Learning in Graphical Models , pp. 175-204
    • Mackay, D.1
  • 19
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 21
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved Boosting Using Confidence-rated Predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 22
    • 0141719772 scopus 로고    scopus 로고
    • Finding the most interesting patterns in a database quickly by using sequential sampling
    • T. Scheffer and S. Wrobel. Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. Journal of Machine Learning Research, 3:833-862, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 833-862
    • Scheffer, T.1    Wrobel, S.2
  • 23
    • 26944437744 scopus 로고    scopus 로고
    • Knowledge-based sampling for subgroup discovery
    • K. Morik, J.-F. Boulicaut, and A. Siebes, editors, Lecture Notes in Computer Science. Springer. To appear
    • M. Scholz. Knowledge-Based Sampling for Subgroup Discovery. In K. Morik, J.-F. Boulicaut, and A. Siebes, editors, Proc. of the Workshop on Detecting Local Patterns, Lecture Notes in Computer Science. Springer, 2005. To appear.
    • (2005) Proc. of the Workshop on Detecting Local Patterns
    • Scholz, M.1
  • 27
    • 34548792706 scopus 로고    scopus 로고
    • An algorithm for multi-relational discovery of subgroups
    • J. Komorowski and J. Zytkow, editors, Berlin, New York. Springer
    • S. Wrobel. An Algorithm for Multi-relational Discovery of Subgroups. In J. Komorowski and J. Zytkow, editors, Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97), pages 78-87, Berlin, New York, 1997. Springer.
    • (1997) Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97) , pp. 78-87
    • Wrobel, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.