-
2
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Tucson, AZ. ACM
-
S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD '97), pages 255-264, Tucson, AZ., 1997. ACM.
-
(1997)
Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD '97)
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.3
Tsur, S.4
-
4
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
Springer Verlag Berlin, Barcelona, Spain
-
P. Cunningham and J. Carney. Diversity versus Quality in Classification Ensembles Based on Feature Selection. In Proceedings of the 11th European Conference on Machine Learning (ECML 2000), pages 109-116. Springer Verlag Berlin, Barcelona, Spain, 2000.
-
(2000)
Proceedings of the 11th European Conference on Machine Learning (ECML 2000)
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
7
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.R.2
-
8
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, (28):337-374, 2000.
-
(2000)
Annals of Statistics
, Issue.28
, pp. 337-374
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
9
-
-
14844361816
-
ROC 'n' rule learning - Towards a better understanding of covering algorithms
-
J. Fürnkranz and P. Flach. ROC 'n' Rule Learning - Towards a Better Understanding of Covering Algorithms. Machine Learning, 58(1):39-77, 2005.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 39-77
-
-
Fürnkranz, J.1
Flach, P.2
-
12
-
-
0002192370
-
Explora: A multipattern and multistrategy discovery assistant
-
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, chapter 3, AAAI Press/The MIT Press, Menlo Park, California
-
W. Klösgen. Explora: A Multipattern and Multistrategy Discovery Assistant. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 3, pages 249-272. AAAI Press/The MIT Press, Menlo Park, California, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 249-272
-
-
Klösgen, W.1
-
14
-
-
84925740795
-
Subgroup discovery with CN2-SD
-
Feb
-
N. Lavrac, B. Kavsek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5:153-188, Feb 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 153-188
-
-
Lavrac, N.1
Kavsek, B.2
Flach, P.3
Todorovski, L.4
-
16
-
-
0001341735
-
Introduction to monte carlo methods
-
D. Mackay. Introduction To Monte Carlo Methods. In Learning in Graphical Models, pages 175-204. 1998.
-
(1998)
Learning in Graphical Models
, pp. 175-204
-
-
Mackay, D.1
-
19
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
21
-
-
0033281701
-
Improved boosting using confidence-rated predictions
-
R. E. Schapire and Y. Singer. Improved Boosting Using Confidence-rated Predictions. Machine Learning, 37(3):297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
22
-
-
0141719772
-
Finding the most interesting patterns in a database quickly by using sequential sampling
-
T. Scheffer and S. Wrobel. Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. Journal of Machine Learning Research, 3:833-862, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 833-862
-
-
Scheffer, T.1
Wrobel, S.2
-
23
-
-
26944437744
-
Knowledge-based sampling for subgroup discovery
-
K. Morik, J.-F. Boulicaut, and A. Siebes, editors, Lecture Notes in Computer Science. Springer. To appear
-
M. Scholz. Knowledge-Based Sampling for Subgroup Discovery. In K. Morik, J.-F. Boulicaut, and A. Siebes, editors, Proc. of the Workshop on Detecting Local Patterns, Lecture Notes in Computer Science. Springer, 2005. To appear.
-
(2005)
Proc. of the Workshop on Detecting Local Patterns
-
-
Scholz, M.1
-
27
-
-
34548792706
-
An algorithm for multi-relational discovery of subgroups
-
J. Komorowski and J. Zytkow, editors, Berlin, New York. Springer
-
S. Wrobel. An Algorithm for Multi-relational Discovery of Subgroups. In J. Komorowski and J. Zytkow, editors, Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97), pages 78-87, Berlin, New York, 1997. Springer.
-
(1997)
Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97)
, pp. 78-87
-
-
Wrobel, S.1
|