-
2
-
-
0035478854
-
Random forests
-
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Tucson, AZ. ACM
-
Sergey Brin, Rajeev Motwani, Jeffrey Ullman, and Shalom Tsur. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD '97), pages 255-264, Tucson, AZ., 1997. ACM.
-
(1997)
Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD '97)
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.3
Tsur, S.4
-
4
-
-
26944454497
-
ROC graphs: Notes and practical considerations for researchers
-
Submitted to
-
T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers, 2004. Submitted to Machine Learning.
-
(2004)
Machine Learning
-
-
Fawcett, T.1
-
5
-
-
0031211090
-
A decision-theoretic generalization of online learning and an application to boosting
-
Yoav Freund and Robert R. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119 - 139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.R.2
-
6
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, (28):337-374, 2000.
-
(2000)
Annals of Statistics
, Issue.28
, pp. 337-374
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
8744231243
-
Pattern detection and discovery
-
David Hand, Niall Adams, and Richard Bolton, editors . Springer
-
David Hand. Pattern detection and discovery. In David Hand, Niall Adams, and Richard Bolton, editors, Pattern Detection and Discovery. Springer, 2002.
-
(2002)
Pattern Detection and Discovery
-
-
Hand, D.1
-
10
-
-
0002192370
-
A multipattern and multistrategy discovery assistant
-
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, chapter 3, . AAAI Press/The MIT Press, Menlo Park, California
-
Willi Klösgen. Explora: A Multipattern and Multistrategy Discovery Assistant. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 3, pages 249-272. AAAI Press/The MIT Press, Menlo Park, California, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 249-272
-
-
Explora, W.K.1
-
12
-
-
72849135241
-
Rule induction for subgroup discovery with CN2-SD
-
Marko Bohanec, Dunja Mladenic, and Nada Lavrac, editors, August
-
Nada Lavrac, Peter Flach, Branko Kavsek, and Ljupco Todorovski. Rule Induction for Subgroup Discovery with CN2-SD. In Marko Bohanec, Dunja Mladenic, and Nada Lavrac, editors, 2nd Int. Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and MetaLearning, August 2002.
-
(2002)
2nd Int. Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and MetaLearning
-
-
Lavrac, N.1
Flach, P.2
Kavsek, B.3
Todorovski, L.4
-
14
-
-
0001341735
-
Introduction to Monte Carlo methods
-
D.J.C. Mackay. Introduction To Monte Carlo Methods. In Learning in Graphical Models, pages 175-204. 1998.
-
(1998)
Learning in Graphical Models
, pp. 175-204
-
-
Mackay, D.J.C.1
-
17
-
-
0025448521
-
The strength of weak learnability
-
Robert E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
18
-
-
0033281701
-
Improved boosting using confidence-rated predictions
-
Robert E. Schapire and Yoram Singer. Improved boosting using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
20
-
-
0141719772
-
Finding the most interesting patterns in a database quickly by using sequential sampling
-
Tobias Scheffer and Stefan Wrobel. Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. Journal of Machine Learning Research, 3:833-862, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 833-862
-
-
Scheffer, T.1
Wrobel, S.2
-
24
-
-
34548792706
-
An algorithm for multi-relational discovery of subgroups
-
J. Komorowski and J. Zytkow, editors, Berlin, New York. Springer
-
Stefan Wrobel. An Algorithm for Multi-relational Discovery of Subgroups. In J. Komorowski and J. Zytkow, editors, Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97), pages 78-87, Berlin, New York, 1997. Springer.
-
(1997)
Principles of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97)
, pp. 78-87
-
-
Wrobel, S.1
|