메뉴 건너뛰기




Volumn 34, Issue 5, 2004, Pages 1150-1156

A mixture model-based approach to the classification of ecological habitats using Forest Inventory and Analysis data

Author keywords

[No Author keywords available]

Indexed keywords

BIODIVERSITY; ECOLOGY; ECOSYSTEMS; ENVIRONMENTAL ENGINEERING; NEURAL NETWORKS;

EID: 3042723796     PISSN: 00455067     EISSN: None     Source Type: Journal    
DOI: 10.1139/x04-005     Document Type: Article
Times cited : (12)

References (41)
  • 1
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson, J.A., P.H. Swain, and O.K. Ersoy. 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28(4): 540-551.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.4 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 2
    • 0014061349 scopus 로고
    • A simple method of resolution of a distribution into Gaussian components
    • Bhattacharya, C.G. 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics, 23: 115-135.
    • (1967) Biometrics , vol.23 , pp. 115-135
    • Bhattacharya, C.G.1
  • 3
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classification of remote sensed data
    • Congalton, R.G. 1991. A review of assessing the accuracy of classification of remote sensed data. Remote Sens. Environ. 37: 35-46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 5
    • 0020968740 scopus 로고
    • Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques
    • Congalton, R.G., Oderwald, R.G., and Mead, R.A. 1983. Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm. Eng. Remote Sens. 49(12): 1671-1678.
    • (1983) Photogramm. Eng. Remote Sens. , vol.49 , Issue.12 , pp. 1671-1678
    • Congalton, R.G.1    Oderwald, R.G.2    Mead, R.A.3
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39: 1-38.
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0030157904 scopus 로고    scopus 로고
    • An introduction to finite mixture distributions
    • Everitt, B.S. 1996. An introduction to finite mixture distributions. Stat. Meth. Med. Res. 5: 107-127.
    • (1996) Stat. Meth. Med. Res. , vol.5 , pp. 107-127
    • Everitt, B.S.1
  • 10
    • 0028560774 scopus 로고
    • Classification of remotely sensed data by an artificial neural network: Issues related to training data characteristics
    • Foody, G.M., McCulloch, M.B., and Yates, W.B. 1995. Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics. Photogramm. Eng. Remote Sens. 61(4): 391-401.
    • (1995) Photogramm. Eng. Remote Sens. , vol.61 , Issue.4 , pp. 391-401
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 11
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., and Raftery, A.E. 1998. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41: 578-588.
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., and Raftery, A.E. 2002. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97: 611-631.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0000198785 scopus 로고
    • Estimation of parameters for a mixture of normal distribution
    • Hasselblad, V. 1966. Estimation of parameters for a mixture of normal distribution. Technometrics, 8: 431-444.
    • (1966) Technometrics , vol.8 , pp. 431-444
    • Hasselblad, V.1
  • 14
    • 0001131390 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • Hastie, T., and Tibshirani, R. 1996. Discriminant analysis by Gaussian mixtures. J. R. Stat. Soc. B 58: 155-176.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 155-176
    • Hastie, T.1    Tibshirani, R.2
  • 15
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • Hepner, G.F., Logan, T., Ritter, N., and Bryant, N. 1990. Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogramm. Eng. Remote Sens. 56: 469-473.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 16
    • 0023486388 scopus 로고
    • Correct formulation of the Kappa coefficient agreement
    • Hudson, W.D., and Ramm, C.W. 1987. Correct formulation of the Kappa coefficient agreement. Photogramm. Eng. Remote Sens. 53(4): 421-422.
    • (1987) Photogramm. Eng. Remote Sens. , vol.53 , Issue.4 , pp. 421-422
    • Hudson, W.D.1    Ramm, C.W.2
  • 17
    • 0032028423 scopus 로고    scopus 로고
    • Mixture of Weibull distributions - Parametric characterization of failure rate function
    • Jiang, R., and Murthy, D.N.P. 1998. Mixture of Weibull distributions - parametric characterization of failure rate function. Appl. Stochastic Models Data Anal. 14: 47-65.
    • (1998) Appl. Stochastic Models Data Anal. , vol.14 , pp. 47-65
    • Jiang, R.1    Murthy, D.N.P.2
  • 18
    • 0024855681 scopus 로고
    • Classification of merged AVHRR and SMMR arctic data with neural networks
    • Key, J.R., Maslanik, A., and Schweiger, A.J. 1989. Classification of merged AVHRR and SMMR arctic data with neural networks. Photogramm. Eng. Remote Sens. 55(9): 1331-1338.
    • (1989) Photogramm. Eng. Remote Sens. , vol.55 , Issue.9 , pp. 1331-1338
    • Key, J.R.1    Maslanik, A.2    Schweiger, A.J.3
  • 19
    • 0035095938 scopus 로고    scopus 로고
    • Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments
    • Koukoulas, S., and Blackburn, G.A. 2001. Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments. Photogramm. Eng. Remote Sens. 67(4): 449-510.
    • (2001) Photogramm. Eng. Remote Sens. , vol.67 , Issue.4 , pp. 449-510
    • Koukoulas, S.1    Blackburn, G.A.2
  • 21
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling: An introduction
    • Lek, S., and Guegan, J.F. 1999. Artificial neural networks as a tool in ecological modeling: an introduction. Ecol. Model. 120: 65-73.
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 22
    • 0036845151 scopus 로고    scopus 로고
    • A finite mixture model for characterizing the diameter distribution of mixed-species forest stands
    • Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., and Gove, J.H. 2002. A finite mixture model for characterizing the diameter distribution of mixed-species forest stands. For. Sci. 48: 653-661.
    • (2002) For. Sci. , vol.48 , pp. 653-661
    • Liu, C.1    Zhang, L.2    Davis, C.J.3    Solomon, D.S.4    Gove, J.H.5
  • 23
    • 0042427272 scopus 로고    scopus 로고
    • A comparison of neural networks and statistical methods in classification of ecological habitats using FIA data
    • Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., Brann, T.B., and Caldwell, T. 2003. A comparison of neural networks and statistical methods in classification of ecological habitats using FIA data. For. Sci. 49(4): 619-631.
    • (2003) For. Sci. , vol.49 , Issue.4 , pp. 619-631
    • Liu, C.1    Zhang, L.2    Davis, C.J.3    Solomon, D.S.4    Brann, T.B.5    Caldwell, T.6
  • 24
    • 0002986949 scopus 로고
    • Analysis of length-frequency distributions
    • Edited by R.C. Summerfelt and G.E. Hall. Iowa State University Press, Ames, Iowa
    • Macdonald, P.D.M. 1987. Analysis of length-frequency distributions. In Age and growth of fish. Edited by R.C. Summerfelt and G.E. Hall. Iowa State University Press, Ames, Iowa. pp. 371-384.
    • (1987) Age and Growth of Fish , pp. 371-384
    • Macdonald, P.D.M.1
  • 25
    • 0000014923 scopus 로고
    • Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures
    • Macdonald, P.D.M., and Pitcher, T.J. 1979. Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36: 987-1001.
    • (1979) J. Fish. Res. Board Can. , vol.36 , pp. 987-1001
    • Macdonald, P.D.M.1    Pitcher, T.J.2
  • 27
    • 0024397947 scopus 로고
    • Mixture models for partially unclassified data: A case study of renal venous renin in hypertension
    • McLachlan, G.J., and Gordon, R.D. 1989. Mixture models for partially unclassified data: a case study of renal venous renin in hypertension. Stat. Med. 8: 1291-1300.
    • (1989) Stat. Med. , vol.8 , pp. 1291-1300
    • McLachlan, G.J.1    Gordon, R.D.2
  • 29
    • 0028704335 scopus 로고
    • On the role of finite mixture models in survival analysis
    • McLachlan, G.J., and McGiffin, D.C. 1994. On the role of finite mixture models in survival analysis. Stat. Meth. Med. Res. 3: 211-226.
    • (1994) Stat. Meth. Med. Res. , vol.3 , pp. 211-226
    • McLachlan, G.J.1    McGiffin, D.C.2
  • 30
    • 3042765880 scopus 로고    scopus 로고
    • Mixture models and neural networks for clustering
    • Edited by T. Downs, M. Frean, and M. Gallagher. Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane
    • McLachlan, G.J., and Peel, D. 1998. Mixture models and neural networks for clustering. In Proceedings of the Ninth Australian Conference on Neural Networks. Edited by T. Downs, M. Frean, and M. Gallagher. Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane. pp. 109-113.
    • (1998) Proceedings of the Ninth Australian Conference on Neural Networks , pp. 109-113
    • McLachlan, G.J.1    Peel, D.2
  • 31
    • 0001883037 scopus 로고    scopus 로고
    • The EMMIX software for the fitting of mixtures of normal and t-components
    • McLachlan, G.J., Peel, D., Basford, K.E., and Adams, P. 1999. The EMMIX software for the fitting of mixtures of normal and t-components. Journal of Statistical Software 4. Available from http://www.maths.uq.edu.au/~gjm/emmix/ paper.
    • (1999) Journal of Statistical Software 4
    • McLachlan, G.J.1    Peel, D.2    Basford, K.E.3    Adams, P.4
  • 32
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G.J., Bean, R.W., and Peel, D. 2002. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18: 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 33
    • 0000726664 scopus 로고
    • Maximum likelihood estimation of mixed stock fishery composition
    • Miller, R.B. 1987. Maximum likelihood estimation of mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 44: 583-590.
    • (1987) Can. J. Fish. Aquat. Sci. , vol.44 , pp. 583-590
    • Miller, R.B.1
  • 34
    • 0001896046 scopus 로고
    • A comparative study of the practical characteristics of neural network and conventional pattern classifiers
    • Edited by R. Lippmann, J. Moody, and D. Touretzky. Morgan Kaufmann. San Mateo, Calif.
    • Ng, K., and Lippmann, R.P. 1991. A comparative study of the practical characteristics of neural network and conventional pattern classifiers. In Neural Information Processing Systems 3. Edited by R. Lippmann, J. Moody, and D. Touretzky. Morgan Kaufmann. San Mateo, Calif. pp. 970-976.
    • (1991) Neural Information Processing Systems 3 , pp. 970-976
    • Ng, K.1    Lippmann, R.P.2
  • 35
    • 16344393214 scopus 로고    scopus 로고
    • Recent applications of artificial neural networks in forest resource management: An overview
    • Papers from the AAAI workshop: Environmental Decision Support Systems and Artificial Intelligence. AAAI Press, Menlo Park, Calif.
    • Peng, C., and Wen, X. 1999. Recent applications of artificial neural networks in forest resource management: an overview. In Papers from the AAAI workshop: Environmental Decision Support Systems and Artificial Intelligence. AAAI Workshop Technical Report. AAAI Press, Menlo Park, Calif. pp. 15-22.
    • (1999) AAAI Workshop Technical Report , pp. 15-22
    • Peng, C.1    Wen, X.2
  • 37
    • 0043251862 scopus 로고    scopus 로고
    • Adaptation of FIBER for forest inventory and analysis growth projections in the state of Maine
    • 16-20 August 1998, Boise, Idaho. Edited by M. Hansen and T. Burk. USDA For. Serv. Gen. Tech. Rep. NC-212
    • Solomon, D.S., Brann, T.B., and Caldwell, L.E. 1998. Adaptation of FIBER for forest inventory and analysis growth projections in the state of Maine. In Proceedings of Integrated Tools for Natural Resources Inventories in the 21st century, 16-20 August 1998, Boise, Idaho. Edited by M. Hansen and T. Burk. USDA For. Serv. Gen. Tech. Rep. NC-212. pp. 580-586.
    • (1998) Proceedings of Integrated Tools for Natural Resources Inventories in the 21st Century , pp. 580-586
    • Solomon, D.S.1    Brann, T.B.2    Caldwell, L.E.3
  • 38
    • 2242467150 scopus 로고    scopus 로고
    • Mixture distributions (update)
    • Edited by S.M. Kotz. John Wiley & Sons Inc., New York.
    • Titterington, D.M. 1997. Mixture distributions (update). In Encyclopedia of statistical sciences. Vol. 1, Update. Edited by S.M. Kotz. John Wiley & Sons Inc., New York. pp. 399-407.
    • (1997) Encyclopedia of Statistical Sciences. Vol. 1, Update , vol.1 , pp. 399-407
    • Titterington, D.M.1
  • 40
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner, B., and Misra, M. 1996. Understanding neural networks as statistical tools. Am. Stat. 50(4):284-293.
    • (1996) Am. Stat. , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 41
    • 0034752367 scopus 로고    scopus 로고
    • A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands
    • Zhang, L., Gove, J.H., Liu, C., and Leak, W.B. 2001. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands. Can. J. For. Res. 31: 1654-1659.
    • (2001) Can. J. For. Res. , vol.31 , pp. 1654-1659
    • Zhang, L.1    Gove, J.H.2    Liu, C.3    Leak, W.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.