-
1
-
-
0025453627
-
Neural network approaches versus statistical methods in classification of multisource remote sensing data
-
Benediktsson, J.A., P.H. Swain, and O.K. Ersoy. 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28(4): 540-551.
-
(1990)
IEEE Trans. Geosci. Remote Sens.
, vol.28
, Issue.4
, pp. 540-551
-
-
Benediktsson, J.A.1
Swain, P.H.2
Ersoy, O.K.3
-
2
-
-
0014061349
-
A simple method of resolution of a distribution into Gaussian components
-
Bhattacharya, C.G. 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics, 23: 115-135.
-
(1967)
Biometrics
, vol.23
, pp. 115-135
-
-
Bhattacharya, C.G.1
-
3
-
-
0026278621
-
A review of assessing the accuracy of classification of remote sensed data
-
Congalton, R.G. 1991. A review of assessing the accuracy of classification of remote sensed data. Remote Sens. Environ. 37: 35-46.
-
(1991)
Remote Sens. Environ.
, vol.37
, pp. 35-46
-
-
Congalton, R.G.1
-
5
-
-
0020968740
-
Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques
-
Congalton, R.G., Oderwald, R.G., and Mead, R.A. 1983. Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm. Eng. Remote Sens. 49(12): 1671-1678.
-
(1983)
Photogramm. Eng. Remote Sens.
, vol.49
, Issue.12
, pp. 1671-1678
-
-
Congalton, R.G.1
Oderwald, R.G.2
Mead, R.A.3
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39: 1-38.
-
(1977)
J. R. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
0030157904
-
An introduction to finite mixture distributions
-
Everitt, B.S. 1996. An introduction to finite mixture distributions. Stat. Meth. Med. Res. 5: 107-127.
-
(1996)
Stat. Meth. Med. Res.
, vol.5
, pp. 107-127
-
-
Everitt, B.S.1
-
10
-
-
0028560774
-
Classification of remotely sensed data by an artificial neural network: Issues related to training data characteristics
-
Foody, G.M., McCulloch, M.B., and Yates, W.B. 1995. Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics. Photogramm. Eng. Remote Sens. 61(4): 391-401.
-
(1995)
Photogramm. Eng. Remote Sens.
, vol.61
, Issue.4
, pp. 391-401
-
-
Foody, G.M.1
McCulloch, M.B.2
Yates, W.B.3
-
11
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley, C., and Raftery, A.E. 1998. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41: 578-588.
-
(1998)
Comput. J.
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
12
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
Fraley, C., and Raftery, A.E. 2002. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97: 611-631.
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
13
-
-
0000198785
-
Estimation of parameters for a mixture of normal distribution
-
Hasselblad, V. 1966. Estimation of parameters for a mixture of normal distribution. Technometrics, 8: 431-444.
-
(1966)
Technometrics
, vol.8
, pp. 431-444
-
-
Hasselblad, V.1
-
14
-
-
0001131390
-
Discriminant analysis by Gaussian mixtures
-
Hastie, T., and Tibshirani, R. 1996. Discriminant analysis by Gaussian mixtures. J. R. Stat. Soc. B 58: 155-176.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 155-176
-
-
Hastie, T.1
Tibshirani, R.2
-
15
-
-
0025573206
-
Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
-
Hepner, G.F., Logan, T., Ritter, N., and Bryant, N. 1990. Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogramm. Eng. Remote Sens. 56: 469-473.
-
(1990)
Photogramm. Eng. Remote Sens.
, vol.56
, pp. 469-473
-
-
Hepner, G.F.1
Logan, T.2
Ritter, N.3
Bryant, N.4
-
16
-
-
0023486388
-
Correct formulation of the Kappa coefficient agreement
-
Hudson, W.D., and Ramm, C.W. 1987. Correct formulation of the Kappa coefficient agreement. Photogramm. Eng. Remote Sens. 53(4): 421-422.
-
(1987)
Photogramm. Eng. Remote Sens.
, vol.53
, Issue.4
, pp. 421-422
-
-
Hudson, W.D.1
Ramm, C.W.2
-
17
-
-
0032028423
-
Mixture of Weibull distributions - Parametric characterization of failure rate function
-
Jiang, R., and Murthy, D.N.P. 1998. Mixture of Weibull distributions - parametric characterization of failure rate function. Appl. Stochastic Models Data Anal. 14: 47-65.
-
(1998)
Appl. Stochastic Models Data Anal.
, vol.14
, pp. 47-65
-
-
Jiang, R.1
Murthy, D.N.P.2
-
18
-
-
0024855681
-
Classification of merged AVHRR and SMMR arctic data with neural networks
-
Key, J.R., Maslanik, A., and Schweiger, A.J. 1989. Classification of merged AVHRR and SMMR arctic data with neural networks. Photogramm. Eng. Remote Sens. 55(9): 1331-1338.
-
(1989)
Photogramm. Eng. Remote Sens.
, vol.55
, Issue.9
, pp. 1331-1338
-
-
Key, J.R.1
Maslanik, A.2
Schweiger, A.J.3
-
19
-
-
0035095938
-
Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments
-
Koukoulas, S., and Blackburn, G.A. 2001. Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments. Photogramm. Eng. Remote Sens. 67(4): 449-510.
-
(2001)
Photogramm. Eng. Remote Sens.
, vol.67
, Issue.4
, pp. 449-510
-
-
Koukoulas, S.1
Blackburn, G.A.2
-
21
-
-
0344604541
-
Artificial neural networks as a tool in ecological modeling: An introduction
-
Lek, S., and Guegan, J.F. 1999. Artificial neural networks as a tool in ecological modeling: an introduction. Ecol. Model. 120: 65-73.
-
(1999)
Ecol. Model.
, vol.120
, pp. 65-73
-
-
Lek, S.1
Guegan, J.F.2
-
22
-
-
0036845151
-
A finite mixture model for characterizing the diameter distribution of mixed-species forest stands
-
Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., and Gove, J.H. 2002. A finite mixture model for characterizing the diameter distribution of mixed-species forest stands. For. Sci. 48: 653-661.
-
(2002)
For. Sci.
, vol.48
, pp. 653-661
-
-
Liu, C.1
Zhang, L.2
Davis, C.J.3
Solomon, D.S.4
Gove, J.H.5
-
23
-
-
0042427272
-
A comparison of neural networks and statistical methods in classification of ecological habitats using FIA data
-
Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., Brann, T.B., and Caldwell, T. 2003. A comparison of neural networks and statistical methods in classification of ecological habitats using FIA data. For. Sci. 49(4): 619-631.
-
(2003)
For. Sci.
, vol.49
, Issue.4
, pp. 619-631
-
-
Liu, C.1
Zhang, L.2
Davis, C.J.3
Solomon, D.S.4
Brann, T.B.5
Caldwell, T.6
-
24
-
-
0002986949
-
Analysis of length-frequency distributions
-
Edited by R.C. Summerfelt and G.E. Hall. Iowa State University Press, Ames, Iowa
-
Macdonald, P.D.M. 1987. Analysis of length-frequency distributions. In Age and growth of fish. Edited by R.C. Summerfelt and G.E. Hall. Iowa State University Press, Ames, Iowa. pp. 371-384.
-
(1987)
Age and Growth of Fish
, pp. 371-384
-
-
Macdonald, P.D.M.1
-
25
-
-
0000014923
-
Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures
-
Macdonald, P.D.M., and Pitcher, T.J. 1979. Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36: 987-1001.
-
(1979)
J. Fish. Res. Board Can.
, vol.36
, pp. 987-1001
-
-
Macdonald, P.D.M.1
Pitcher, T.J.2
-
27
-
-
0024397947
-
Mixture models for partially unclassified data: A case study of renal venous renin in hypertension
-
McLachlan, G.J., and Gordon, R.D. 1989. Mixture models for partially unclassified data: a case study of renal venous renin in hypertension. Stat. Med. 8: 1291-1300.
-
(1989)
Stat. Med.
, vol.8
, pp. 1291-1300
-
-
McLachlan, G.J.1
Gordon, R.D.2
-
29
-
-
0028704335
-
On the role of finite mixture models in survival analysis
-
McLachlan, G.J., and McGiffin, D.C. 1994. On the role of finite mixture models in survival analysis. Stat. Meth. Med. Res. 3: 211-226.
-
(1994)
Stat. Meth. Med. Res.
, vol.3
, pp. 211-226
-
-
McLachlan, G.J.1
McGiffin, D.C.2
-
30
-
-
3042765880
-
Mixture models and neural networks for clustering
-
Edited by T. Downs, M. Frean, and M. Gallagher. Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane
-
McLachlan, G.J., and Peel, D. 1998. Mixture models and neural networks for clustering. In Proceedings of the Ninth Australian Conference on Neural Networks. Edited by T. Downs, M. Frean, and M. Gallagher. Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane. pp. 109-113.
-
(1998)
Proceedings of the Ninth Australian Conference on Neural Networks
, pp. 109-113
-
-
McLachlan, G.J.1
Peel, D.2
-
31
-
-
0001883037
-
The EMMIX software for the fitting of mixtures of normal and t-components
-
McLachlan, G.J., Peel, D., Basford, K.E., and Adams, P. 1999. The EMMIX software for the fitting of mixtures of normal and t-components. Journal of Statistical Software 4. Available from http://www.maths.uq.edu.au/~gjm/emmix/ paper.
-
(1999)
Journal of Statistical Software 4
-
-
McLachlan, G.J.1
Peel, D.2
Basford, K.E.3
Adams, P.4
-
32
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
McLachlan, G.J., Bean, R.W., and Peel, D. 2002. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18: 413-422.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
33
-
-
0000726664
-
Maximum likelihood estimation of mixed stock fishery composition
-
Miller, R.B. 1987. Maximum likelihood estimation of mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 44: 583-590.
-
(1987)
Can. J. Fish. Aquat. Sci.
, vol.44
, pp. 583-590
-
-
Miller, R.B.1
-
34
-
-
0001896046
-
A comparative study of the practical characteristics of neural network and conventional pattern classifiers
-
Edited by R. Lippmann, J. Moody, and D. Touretzky. Morgan Kaufmann. San Mateo, Calif.
-
Ng, K., and Lippmann, R.P. 1991. A comparative study of the practical characteristics of neural network and conventional pattern classifiers. In Neural Information Processing Systems 3. Edited by R. Lippmann, J. Moody, and D. Touretzky. Morgan Kaufmann. San Mateo, Calif. pp. 970-976.
-
(1991)
Neural Information Processing Systems 3
, pp. 970-976
-
-
Ng, K.1
Lippmann, R.P.2
-
35
-
-
16344393214
-
Recent applications of artificial neural networks in forest resource management: An overview
-
Papers from the AAAI workshop: Environmental Decision Support Systems and Artificial Intelligence. AAAI Press, Menlo Park, Calif.
-
Peng, C., and Wen, X. 1999. Recent applications of artificial neural networks in forest resource management: an overview. In Papers from the AAAI workshop: Environmental Decision Support Systems and Artificial Intelligence. AAAI Workshop Technical Report. AAAI Press, Menlo Park, Calif. pp. 15-22.
-
(1999)
AAAI Workshop Technical Report
, pp. 15-22
-
-
Peng, C.1
Wen, X.2
-
37
-
-
0043251862
-
Adaptation of FIBER for forest inventory and analysis growth projections in the state of Maine
-
16-20 August 1998, Boise, Idaho. Edited by M. Hansen and T. Burk. USDA For. Serv. Gen. Tech. Rep. NC-212
-
Solomon, D.S., Brann, T.B., and Caldwell, L.E. 1998. Adaptation of FIBER for forest inventory and analysis growth projections in the state of Maine. In Proceedings of Integrated Tools for Natural Resources Inventories in the 21st century, 16-20 August 1998, Boise, Idaho. Edited by M. Hansen and T. Burk. USDA For. Serv. Gen. Tech. Rep. NC-212. pp. 580-586.
-
(1998)
Proceedings of Integrated Tools for Natural Resources Inventories in the 21st Century
, pp. 580-586
-
-
Solomon, D.S.1
Brann, T.B.2
Caldwell, L.E.3
-
38
-
-
2242467150
-
Mixture distributions (update)
-
Edited by S.M. Kotz. John Wiley & Sons Inc., New York.
-
Titterington, D.M. 1997. Mixture distributions (update). In Encyclopedia of statistical sciences. Vol. 1, Update. Edited by S.M. Kotz. John Wiley & Sons Inc., New York. pp. 399-407.
-
(1997)
Encyclopedia of Statistical Sciences. Vol. 1, Update
, vol.1
, pp. 399-407
-
-
Titterington, D.M.1
-
39
-
-
0003747605
-
-
John Wiley & Sons Inc., New York
-
Titterington, D.M., Smith, A.F.M., and Makov, U.E. 1985. Statistical analysis of finite mixture distributions. John Wiley & Sons Inc., New York.
-
(1985)
Statistical Analysis of Finite Mixture Distributions
-
-
Titterington, D.M.1
Smith, A.F.M.2
Makov, U.E.3
-
40
-
-
0030327681
-
Understanding neural networks as statistical tools
-
Warner, B., and Misra, M. 1996. Understanding neural networks as statistical tools. Am. Stat. 50(4):284-293.
-
(1996)
Am. Stat.
, vol.50
, Issue.4
, pp. 284-293
-
-
Warner, B.1
Misra, M.2
-
41
-
-
0034752367
-
A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands
-
Zhang, L., Gove, J.H., Liu, C., and Leak, W.B. 2001. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands. Can. J. For. Res. 31: 1654-1659.
-
(2001)
Can. J. For. Res.
, vol.31
, pp. 1654-1659
-
-
Zhang, L.1
Gove, J.H.2
Liu, C.3
Leak, W.B.4
|