메뉴 건너뛰기




Volumn 80, Issue 2, 2005, Pages 141-153

Improved classification of medical data using abductive network committees trained on different feature subsets

Author keywords

Abductive networks; Breast cancer; Classification accuracy; Diabetes; Feature selection; Heart disease; Medical diagnosis; Network committee; Network ensemble; Neural networks

Indexed keywords

COMPUTER NETWORKS; DIAGNOSIS; DISEASES; ERROR ANALYSIS; FEATURE EXTRACTION; LEARNING ALGORITHMS; NEURAL NETWORKS; TUMORS;

EID: 27144546980     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2005.08.001     Document Type: Article
Times cited : (27)

References (46)
  • 3
    • 0031408003 scopus 로고    scopus 로고
    • Modeling obesity using abductive networks
    • R.E. Abdel-Aal, and A.M. Mangoud Modeling obesity using abductive networks Comput. Biomed. Res. 30 1997 451 471
    • (1997) Comput. Biomed. Res. , vol.30 , pp. 451-471
    • Abdel-Aal, R.E.1    Mangoud, A.M.2
  • 4
    • 0029823263 scopus 로고    scopus 로고
    • Abductive machine learning for modeling and predicting the educational score in school health surveys
    • R.E. Abdel-Aal, and A.M. Mangoud Abductive machine learning for modeling and predicting the educational score in school health surveys Methods Inf. Med. 35 1996 265 271
    • (1996) Methods Inf. Med. , vol.35 , pp. 265-271
    • Abdel-Aal, R.E.1    Mangoud, A.M.2
  • 7
    • 25044474597 scopus 로고    scopus 로고
    • Screening of delayed gastric emptying using electrogastrography and abductive networks
    • J. Cheung, Z.Y. Lin, R.W. McCallum, and J.D.Z. Chen Screening of delayed gastric emptying using electrogastrography and abductive networks Gastroenterology S 112 Suppl. 1997 711
    • (1997) Gastroenterology , vol.112 , Issue.SUPPL. , pp. 711
    • Cheung, J.1    Lin, Z.Y.2    McCallum, R.W.3    Chen, J.D.Z.4
  • 11
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen Lung cancer cell identification based on artificial neural network ensembles Artif. Intell. Med. 24 2002 25 36
    • (2002) Artif. Intell. Med. , vol.24 , pp. 25-36
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4
  • 12
    • 0032120796 scopus 로고    scopus 로고
    • Fast committee learning: Preliminary results
    • A. Swann, and N. Allinson Fast committee learning: preliminary results Electron. Lett. 34 1998 1408 1410
    • (1998) Electron. Lett. , vol.34 , pp. 1408-1410
    • Swann, A.1    Allinson, N.2
  • 15
    • 2642540162 scopus 로고    scopus 로고
    • Abductive network committees for improved classification of medical data
    • R.E. Abdel-Aal Abductive network committees for improved classification of medical data Methods Inf. Med. 43 2004 192 201
    • (2004) Methods Inf. Med. , vol.43 , pp. 192-201
    • Abdel-Aal, R.E.1
  • 16
    • 0141686299 scopus 로고    scopus 로고
    • Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
    • S.-B. Cho, and J. Ryu Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features Proceedings of the IEEE '90 2002 1744 1753
    • (2002) Proceedings of the IEEE '90 , pp. 1744-1753
    • Cho, S.-B.1    Ryu, J.2
  • 17
    • 0036064007 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification in medical diagnostics
    • A. Tsymbal, and S. Puuronen Ensemble feature selection with the simple Bayesian classification in medical diagnostics 15th IEEE Symposium on Computer-Based Medical Systems 2002 225 230
    • (2002) 15th IEEE Symposium on Computer-Based Medical Systems , pp. 225-230
    • Tsymbal, A.1    Puuronen, S.2
  • 20
    • 0034505033 scopus 로고    scopus 로고
    • Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for high-dimensional remote sensing data
    • S. Yu, S. De Backer, and P. Scheunders Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for high-dimensional remote sensing data IEEE International Conference on Systems, Man, and Cybernetics 2000 1912 1916
    • (2000) IEEE International Conference on Systems, Man, and Cybernetics , pp. 1912-1916
    • Yu, S.1    De Backer, S.2    Scheunders, P.3
  • 22
    • 0141865701 scopus 로고    scopus 로고
    • Reduced feature-set based parallel CHMM speech recognition systems
    • W.H. Abdulla, and N. Kasabov Reduced feature-set based parallel CHMM speech recognition systems Inf. Sci. 156 2003 21 38
    • (2003) Inf. Sci. , vol.156 , pp. 21-38
    • Abdulla, W.H.1    Kasabov, N.2
  • 25
    • 0030707020 scopus 로고    scopus 로고
    • Feature selection and classifiers for the computerized detection of mass lesions in digital mammography
    • M.A. Kupinski, and M.L. Giger Feature selection and classifiers for the computerized detection of mass lesions in digital mammography International Conference on Neural Networks 1997 2460 2463
    • (1997) International Conference on Neural Networks , pp. 2460-2463
    • Kupinski, M.A.1    Giger, M.L.2
  • 26
    • 0029378347 scopus 로고
    • Feature selection in the pattern classification problem of digital chest radiograph segmentation
    • M.F. McNitt-Gray, H.K. Huang, and J.W. Sayre Feature selection in the pattern classification problem of digital chest radiograph segmentation IEEE Trans. Med. Imag. 14 1995 537 547
    • (1995) IEEE Trans. Med. Imag. , vol.14 , pp. 537-547
    • McNitt-Gray, M.F.1    Huang, H.K.2    Sayre, J.W.3
  • 28
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1997 245 271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset election
    • R. Kohavi, and G.H. John Wrappers for feature subset election Artif. Intell. 7 1997 273 323
    • (1997) Artif. Intell. , vol.7 , pp. 273-323
    • Kohavi, R.1    John, G.H.2
  • 31
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski, A. Skowron, Rough set methods in feature selection and recognition, Pattern Recogn. Lett. 24 (2003) 833-849.
    • (2003) Pattern Recogn. Lett. , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 32
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 35
    • 0033500743 scopus 로고    scopus 로고
    • Accuracy and reliability of pedotransfer functions as affected by grouping Soils
    • Y.A. Pachepsky, and W.J. Rawls Accuracy and reliability of pedotransfer functions as affected by grouping Soils Soil Sci. Soc. Am. J. 63 1999 1748 1757
    • (1999) Soil Sci. Soc. Am. J. , vol.63 , pp. 1748-1757
    • Pachepsky, Y.A.1    Rawls, W.J.2
  • 36
    • 27144448920 scopus 로고    scopus 로고
    • Alok Singh, http://www.ics.uci.edu/∼mlearn/MLRepository.html
    • Singh, A.1
  • 37
    • 0003519955 scopus 로고
    • AbTech Corporation, Charlottesville, VA, AIM User's Manual, 1990.
    • (1990) AIM User's Manual
  • 38
    • 0002167090 scopus 로고
    • Predicted squared error - A criterion for automatic model selection
    • S.J. Farlow Marcel-Dekker New York
    • A.R. Barron Predicted squared error - a criterion for automatic model selection S.J. Farlow Self-Organizing Methods in Modeling: GMDH Type Algorithms 1984 Marcel-Dekker New York 87 103
    • (1984) Self-Organizing Methods in Modeling: GMDH Type Algorithms , pp. 87-103
    • Barron, A.R.1
  • 41
    • 0030718402 scopus 로고    scopus 로고
    • An empirical evaluation of bagging and boosting for artificial neural networks
    • D.W. Opitz, and R.F. Maclin An empirical evaluation of bagging and boosting for artificial neural networks International Conference on Neural Networks 1997 1400 1405
    • (1997) International Conference on Neural Networks , pp. 1400-1405
    • Opitz, D.W.1    MacLin, R.F.2
  • 44
    • 2442624867 scopus 로고    scopus 로고
    • Rough set approach for generation of classification rules of breast cancer data
    • A.E. Hassanein, and J.M.H. Ali Rough set approach for generation of classification rules of breast cancer data Informatica 15 2004 23 38
    • (2004) Informatica , vol.15 , pp. 23-38
    • Hassanein, A.E.1    Ali, J.M.H.2
  • 45
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, and K. Grabczewski A new methodology of extraction, optimization and application of crisp and fuzzy logical rules IEEE Trans. Neural Networks 12 2001 277 306
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 46
    • 2942652396 scopus 로고    scopus 로고
    • Feature selection for modular GA-based classification
    • F. Zhu, and S. Guan Feature selection for modular GA-based classification Appl. Soft Comput. 4 2004 381 393
    • (2004) Appl. Soft Comput. , vol.4 , pp. 381-393
    • Zhu, F.1    Guan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.