메뉴 건너뛰기




Volumn 4, Issue , 2005, Pages

Artificial neural networks for diagnosis and survival prediction in colon cancer

Author keywords

ANN; Backpropagation; Nodes; Perceptron; Performance; Training; Weights

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CANCER CLASSIFICATION; CANCER RESEARCH; CANCER SURVIVAL; COLON CANCER; COMPUTER PREDICTION; COMPUTER PROGRAM; DIAGNOSTIC ACCURACY; HISTOPATHOLOGY; HUMAN; MACHINE; MATHEMATICAL COMPUTING; MEDICAL INSTRUMENTATION; MEDICAL TECHNOLOGY; METHODOLOGY; NONLINEAR REGRESSION ANALYSIS; PROCESS DESIGN; PUBLISHING; QUALITY CONTROL; RELIABILITY; REVIEW; STATISTICAL ANALYSIS; ARTICLE; COLON TUMOR; NONLINEAR SYSTEM; PROGNOSIS; SENSITIVITY AND SPECIFICITY; SURVIVAL RATE;

EID: 26844479149     PISSN: 14764598     EISSN: 14764598     Source Type: Journal    
DOI: 10.1186/1476-4598-4-29     Document Type: Review
Times cited : (163)

References (48)
  • 2
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design and application
    • Basheer IA, Hajmeer M: Artificial neural networks: fundamentals, computing, design and application. J Microbiol Meth 2000, 43:3-31.
    • (2000) J. Microbiol. Meth. , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 3
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch WS, Pitts W: A logical calculus of the ideas imminent in nervous activity. Bull Math Biphys 1943, 5:115-133.
    • (1943) Bull. Math. Biphys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 4
    • 11144273669 scopus 로고
    • The perceptron: A probalistic method for information storage in the brain
    • Rosenblatt F: The perceptron: a probalistic method for information storage in the brain. Psych Rev 1959, 65:386-407.
    • (1959) Psych. Rev. , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 8
    • 0035871371 scopus 로고    scopus 로고
    • Artificial: Neural networks: Opening the black box
    • Dayhoff JE, DeLeo JM: Artificial neural networks: opening the black box. Cancer 2001, 91(8 Suppl):1615-1635.
    • (2001) Cancer , vol.91 , Issue.8 SUPPL. , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 9
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximations
    • Hornik K, Stinchcomb X, White X: Multilayer feed forward networks are universal approximations. Neural Net 1993, 2:359-366.
    • (1993) Neural Net. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcomb, X.2    White, X.3
  • 10
    • 0035871573 scopus 로고    scopus 로고
    • Neural network and regression predictors of 5-year survival after colon carcinoma treatment
    • Snow PB, Kerr DJ, Brandt JM, Rodvold DM: Neural network and regression predictors of 5-year survival after colon carcinoma treatment. Cancer 2001, 91(8 Suppl):1673-1678.
    • (2001) Cancer , vol.91 , Issue.8 SUPPL. , pp. 1673-1678
    • Snow, P.B.1    Kerr, D.J.2    Brandt, J.M.3    Rodvold, D.M.4
  • 11
    • 0027212862 scopus 로고
    • Statistics using neural networks: Chance effects
    • Livingstone DJ, Manallack DT: Statistics using neural networks: chance effects. J Med Chem 1993, 36:1295-1297.
    • (1993) J. Med. Chem. , vol.36 , pp. 1295-1297
    • Livingstone, D.J.1    Manallack, D.T.2
  • 12
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D: Neural networks in clinical medicine. Med Decis Making 1996, 16:386-398.
    • (1996) Med. Decis. Making , vol.16 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 14
    • 26844472377 scopus 로고
    • Some new results on networks approximation
    • Hornik K: Some new results on networks approximation. Neural Net 1989, 6:1969-1972.
    • (1989) Neural Net. , vol.6 , pp. 1969-1972
    • Hornik, K.1
  • 15
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 16
    • 0037083323 scopus 로고    scopus 로고
    • Statistical prediction models, artificial neural networks and the sophism "I am a patient, not a statistics"
    • Kattan M: Statistical prediction models, artificial neural networks and the sophism "I am a patient, not a statistics". J Clin Oncol 2002, 20:885-887.
    • (2002) J. Clin. Oncol. , vol.20 , pp. 885-887
    • Kattan, M.1
  • 17
    • 0026723889 scopus 로고
    • Comparing and optimizing diagnostic tests: An information-theoretical approach
    • Somoza E, Mossman D: Comparing and optimizing diagnostic tests: an information-theoretical approach. Med Decis Making 1992, 12:179-188.
    • (1992) Med. Decis. Making , vol.12 , pp. 179-188
    • Somoza, E.1    Mossman, D.2
  • 18
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B: Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 1983, 78:316-331.
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 21
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • Dreiseitl S, Ohno-Machado L: Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002, 35:352-359.
    • (2002) J. Biomed. Inform. , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 22
    • 0032814818 scopus 로고    scopus 로고
    • Prevelence-value-accuracy plots: A new method for comparing diagnostic tests based on misclassification costs
    • Remaley AT, Sampson ML, DeLeo JM, Remaley NA, Farsi BD, Zweig MH: Prevelence-value-accuracy plots: a new method for comparing diagnostic tests based on misclassification costs. Clin Chem 1999, 45:934-941.
    • (1999) Clin. Chem. , vol.45 , pp. 934-941
    • Remaley, A.T.1    Sampson, M.L.2    DeLeo, J.M.3    Remaley, N.A.4    Farsi, B.D.5    Zweig, M.H.6
  • 23
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentiis M, Ravdin PM: A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett 1994, 77:127-138.
    • (1994) Cancer Lett. , vol.77 , pp. 127-138
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 25
    • 3042554237 scopus 로고    scopus 로고
    • Artificial neural networks "ready to use" for decision making in the neonatal intensive care unit
    • Walker CR, Frize M: Artificial neural networks "ready to use" for decision making in the neonatal intensive care unit. Pediat Res 2004, 56:6-8.
    • (2004) Pediat. Res. , vol.56 , pp. 6-8
    • Walker, C.R.1    Frize, M.2
  • 26
    • 0026580903 scopus 로고
    • Application of neural networks to the interpretation of laboratory data in cancer diagnosis
    • Astion ML, Wilding P: Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin Chem 1992, 38:34-38.
    • (1992) Clin. Chem. , vol.38 , pp. 34-38
    • Astion, M.L.1    Wilding, P.2
  • 27
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baset WG: Application of artificial neural networks to clinical medicine. Lancet 1995, 346:1135-1138.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baset, W.G.1
  • 28
    • 1542268315 scopus 로고    scopus 로고
    • Multi-class cancer subtype classification based on gene expression signatures with reliability analysis
    • Fu LM, Fu-Liu CS: Multi-class cancer subtype classification based on gene expression signatures with reliability analysis. FEBS Lett 2004, 561:186-190.
    • (2004) FEBS Lett. , vol.561 , pp. 186-190
    • Fu, L.M.1    Fu-Liu, C.S.2
  • 30
    • 18344396961 scopus 로고    scopus 로고
    • An integrated approach utilizing artificial neural network and SELDI mass spectrometry for the classification of human tumors and rapid identification of potential biomarkers
    • Ball G, Mian S, Holding F, Allibone RO, Lowe J, Al S, Li G, McCardle S, Ellis ID, Creaser C, Rees RC: An integrated approach utilizing artificial neural network and SELDI mass spectrometry for the classification of human tumors and rapid identification of potential biomarkers. Bioinformatics 2002, 18:395-404.
    • (2002) Bioinformatics , vol.18 , pp. 395-404
    • Ball, G.1    Mian, S.2    Holding, F.3    Allibone, R.O.4    Lowe, J.5    Al, S.6    Li, G.7    McCardle, S.8    Ellis, I.D.9    Creaser, C.10    Rees, R.C.11
  • 31
    • 2342599129 scopus 로고    scopus 로고
    • Improvement and automation of artificial neural networks to estimate medical outcome
    • Ennett CM, Frize M, Charette E: Improvement and automation of artificial neural networks to estimate medical outcome. Med Engineer Phys 2004, 26:321-328.
    • (2004) Med. Engineer Phys. , vol.26 , pp. 321-328
    • Ennett, C.M.1    Frize, M.2    Charette, E.3
  • 32
    • 1942454824 scopus 로고    scopus 로고
    • New training strategy for constructive neural networks with application to regression problems
    • Ma L, Khorasani K: New training strategy for constructive neural networks with application to regression problems. Neural Networks 2004, 17:589-609.
    • (2004) Neural Networks , vol.17 , pp. 589-609
    • Ma, L.1    Khorasani, K.2
  • 33
    • 0031277422 scopus 로고    scopus 로고
    • Efficient partition of learning data sets for neural network training
    • Tetko IV: Efficient partition of learning data sets for neural network training. Neural Networks 1997, 10:1361-1374.
    • (1997) Neural Networks , vol.10 , pp. 1361-1374
    • Tetko, I.V.1
  • 34
    • 0345628005 scopus 로고    scopus 로고
    • Three methods to speed up the training of feedforward and feedback perceptron
    • Stager F, Agrawal M: Three methods to speed up the training of feedforward and feedback perceptron. Neural Networks 1997, 10:1435-1443.
    • (1997) Neural Networks , vol.10 , pp. 1435-1443
    • Stager, F.1    Agrawal, M.2
  • 37
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002, 99:6567-6577.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 6567-6577
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 38
    • 26844481379 scopus 로고    scopus 로고
    • Microarray-based cancer diagnosis with artificial networks
    • Ringnér M, Peterson C: Microarray-based cancer diagnosis with artificial networks. BioTechniques 2003, 39:530-535.
    • (2003) BioTechniques , vol.39 , pp. 530-535
    • Ringnér, M.1    Peterson, C.2
  • 39
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • Liu B, Cui Q, Jiang T, Ma S: A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinf 2004, 51:131.
    • (2004) BMC Bioinf. , vol.51 , pp. 131
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 40
    • 0033536012 scopus 로고    scopus 로고
    • Broad pattern of gene expression revealed by clustering analysis of tumor and normal colon tissue provided by oligonucleotide arrays
    • Alon U, Barkai N, Notterman DA, Gissh K, Ybarra S, Mack D, Levine AJ: Broad pattern of gene expression revealed by clustering analysis of tumor and normal colon tissue provided by oligonucleotide arrays. Proc Natl Acad Sci USA 1999, 96:6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gissh, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 41
    • 0028230394 scopus 로고
    • Pathological determination of survival associated with colorectal cancer with lymph node metastasis
    • Newland RC, Dent OF, Lyttle MNB, Chapuis DS, Bokey EL: Pathological determination of survival associated with colorectal cancer with lymph node metastasis. Cancer 1994, 73:2076-2082.
    • (1994) Cancer , vol.73 , pp. 2076-2082
    • Newland, R.C.1    Dent, O.F.2    Lyttle, M.N.B.3    Chapuis, D.S.4    Bokey, E.L.5
  • 43
    • 0037302384 scopus 로고    scopus 로고
    • Neural networks in the prediction of survival in patients with colorectal cancer
    • Grumett S, Snow P, Kerr D: Neural networks in the prediction of survival in patients with colorectal cancer. Clin Colorect Cancer 2003, 2:239-244.
    • (2003) Clin. Colorect. Cancer , vol.2 , pp. 239-244
    • Grumett, S.1    Snow, P.2    Kerr, D.3
  • 44
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • 29
    • Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN: Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 2001, 91(8 Suppl):857-862.29.
    • (2001) Cancer , vol.91 , Issue.8 SUPPL. , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3    Henson, D.E.4    Weinstein, J.N.5
  • 45
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000, 19:541-561.
    • (2000) Stat. Med. , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 46
    • 0242608650 scopus 로고    scopus 로고
    • Comparison of Cox regression with other methods for determining predictive models and normograms
    • Kattan MW: Comparison of Cox regression with other methods for determining predictive models and normograms. J Urol 2003, 170:S6-S10.
    • (2003) J. Urol. , vol.170
    • Kattan, M.W.1
  • 47
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial networks with other statistical approaches
    • Sargent DJ: Comparison of artificial networks with other statistical approaches. Cancer 2001, 91:1636-1942.
    • (2001) Cancer , vol.91 , pp. 1636-1942
    • Sargent, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.