메뉴 건너뛰기




Volumn 3541, Issue , 2005, Pages 417-427

Exploiting class hierarchies for knowledge transfer in hyperspectral data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFIERS; DATA TRANSFER; DATABASE SYSTEMS; HIERARCHICAL SYSTEMS; IMAGE ANALYSIS; INFORMATION ANALYSIS; LEARNING SYSTEMS;

EID: 26444498559     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11494683_42     Document Type: Conference Paper
Times cited : (4)

References (16)
  • 1
    • 84958964452 scopus 로고    scopus 로고
    • On-line algorithms in machine learning
    • Fiat and Woeginger, editors. LNCS, Springer
    • A. Blum. On-line algorithms in machine learning. In Fiat and Woeginger, editors, Online Algorithms: The State of the Art. LNCS Vol.1442, Springer, 1998.
    • (1998) Online Algorithms: The State of the Art , vol.1442
    • Blum, A.1
  • 2
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • L. Bruzzone and D. F. Prieto. Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images. IEEE Trans. Geoscience and Remote Sensing, 39:456-460, 2001.
    • (2001) IEEE Trans. Geoscience and Remote Sensing , vol.39 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 4
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • page to appear
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geoscience and Remote Sensing, page to appear, 2005.
    • (2005) IEEE Trans. Geoscience and Remote Sensing
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 5
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • C. Burges B. Scholkopf and A. Smola, editors. MIT Press, Cambridge, USA
    • T. Joachims. Making large-scale SVM learning practical. In C. Burges B. Scholkopf and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 169-184. MIT Press, Cambridge, USA, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 7
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • S. Kumar, J. Ghosh, and M. M. Crawford. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geoscience and Remote Sensing, 39(7): 1368-79, 2001.
    • (2001) IEEE Trans. Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 9
    • 35048891979 scopus 로고    scopus 로고
    • Classifier ensembles for changing environments
    • J. Kittler and F. Roli, editors. LNCS, Springer
    • L. I. Kuncheva. Classifier ensembles for changing environments. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, pages 1-15. LNCS Vol. 3077, Springer, 2004.
    • (2004) Multiple Classifier Systems , vol.3077 , pp. 1-15
    • Kuncheva, L.I.1
  • 10
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles. Machine Learning, 51:181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 14
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 15
    • 21144446383 scopus 로고    scopus 로고
    • An empirical comparison of hierarchical vs. two-level approaches to multiclass problems
    • F. Roli, J. Kittler, and T. Windeatt, editors. LNCS, Springer
    • S. Rajan and J. Ghosh. An empirical comparison of hierarchical vs. two-level approaches to multiclass problems. In F. Roli, J. Kittler, and T. Windeatt, editors, Multiple Classifier Systems, pages 283-292. LNCS Vol. 3077, Springer, 2004.
    • (2004) Multiple Classifier Systems , vol.3077 , pp. 283-292
    • Rajan, S.1    Ghosh, J.2
  • 16
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • B. M. Shahshahani and D. A. Landgrebe. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans. Geoscience and Remote Sensing, 32:1087-1095, 1994.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.