메뉴 건너뛰기




Volumn 46, Issue 3, 2004, Pages 441-458

Posterior analysis of latent competing risk models by parallel tempering

Author keywords

Competing risk models; Markov chain Monte Carlo; Parallel tempering; Survival analysis; Tempered transition

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; MARKOV PROCESSES; MATHEMATICAL MODELS;

EID: 2642537530     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2003.08.005     Document Type: Article
Times cited : (9)

References (36)
  • 1
    • 84963444290 scopus 로고
    • Identifiability results for k-out-of-p systems
    • Basu S. Ghosh J.K. Identifiability results for k-out-of-p systems Comm. Statist.-Theory Methods 12 1983 199-205
    • (1983) Comm. Statist.-Theory Methods , vol.12 , pp. 199-205
    • Basu, S.1    Ghosh, J.K.2
  • 2
    • 0043000178 scopus 로고
    • Some recent development in competing risks theory
    • J. Crowley, & R. A. Johnson (Eds.), Hayward: IMS
    • Basu A. Klein J.P. Some recent development in competing risks theory Crowley J. Johnson R.A. Survival Analysis 1982 216-229 IMS Hayward
    • (1982) Survival Analysis , pp. 216-229
    • Basu, A.1    Klein, J.P.2
  • 3
    • 0033130543 scopus 로고    scopus 로고
    • Bayesian analysis for masked system failure data using non-identical Weibull models
    • Basu S. Basu A.P. Mukhopadhyay C. Bayesian analysis for masked system failure data using non-identical Weibull models J. Statist. Plann. Inference 78 1999 255-275
    • (1999) J. Statist. Plann. Inference , vol.78 , pp. 255-275
    • Basu, S.1    Basu, A.P.2    Mukhopadhyay, C.3
  • 4
    • 21344495908 scopus 로고
    • Bayesian analysis for the poly-Weibull distribution
    • Berger J.M. Sun D.O. Bayesian analysis for the poly-Weibull distribution J. Amer. Statist. Assoc. 88 1993 1412-1418
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 1412-1418
    • Berger, J.M.1    Sun, D.O.2
  • 5
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G. Hurn M. Robert C.P. Computational and inferential difficulties with mixture posterior distributions J. Amer. Statist. Assoc. 95 2000 957-970
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 6
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib S. Marginal likelihood from the Gibbs output J. Amer. Statist. Assoc. 90 1995 1313-1321
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 8
    • 0000565148 scopus 로고    scopus 로고
    • Inference for the poly-Weibull models
    • Davison A.C. Louzada-Neto F. Inference for the poly-Weibull models Statistician 49 2000 189-196
    • (2000) Statistician , vol.49 , pp. 189-196
    • Davison, A.C.1    Louzada-Neto, F.2
  • 9
    • 1842815959 scopus 로고    scopus 로고
    • MCMC estimation of classical and dynamic switching and mixture models
    • Frühwirth-Schnatter S. MCMC estimation of classical and dynamic switching and mixture models J. Amer. Statist. Assoc. 96 2001 194-209
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 11
    • 0001526195 scopus 로고
    • A predictive approach to model selection
    • Geisser S. Eddy W. A predictive approach to model selection J. Amer. Statist. Assoc. 74 1979 153-160
    • (1979) J. Amer. Statist. Assoc. , vol.74 , pp. 153-160
    • Geisser, S.1    Eddy, W.2
  • 12
    • 0029148987 scopus 로고
    • Bayesian analysis of proportional hazards models built from monotone functions
    • Gelfand A.E. Mallick B.K. Bayesian analysis of proportional hazards models built from monotone functions Biometrics 51 1995 843-852
    • (1995) Biometrics , vol.51 , pp. 843-852
    • Gelfand, A.E.1    Mallick, B.K.2
  • 13
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand A.E. Smith A.F.M. Sampling based approaches to calculating marginal densities J. Amer. Statist. Assoc. 85 1990 398-409
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 16
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer C.J. Thompson E. Annealing Markov chain Monte Carlo with applications to ancestral inference J. Amer. Statist. Assoc. 90 1995 909-920
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.2
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for the Gibbs sampling
    • Gilks W.R. Wild P. Adaptive rejection sampling for the Gibbs sampling Appl. Statist. 41 1992 337-348
    • (1992) Appl. Statist. , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 18
    • 64849112811 scopus 로고
    • The identifiability of the competing risk model
    • Heckman J.J. Honoré B. The identifiability of the competing risk model Biometrika 76 1989 325-330
    • (1989) Biometrika , vol.76 , pp. 325-330
    • Heckman, J.J.1    Honoré, B.2
  • 21
    • 0006730544 scopus 로고    scopus 로고
    • Bayesian reliability modeling for masked system lifetime data
    • Kuo L. Yang T.Y. Bayesian reliability modeling for masked system lifetime data Statist. Probab. Lett. 47 2000 229-241
    • (2000) Statist. Probab. Lett. , vol.47 , pp. 229-241
    • Kuo, L.1    Yang, T.Y.2
  • 22
    • 0001702359 scopus 로고
    • Use the tumors lethality to interpret tumorigenicity experiments lacking cause-of-death data
    • Lagakos S.W. Louis T.A. Use the tumors lethality to interpret tumorigenicity experiments lacking cause-of-death data Appl. Statist. 37 1988 169-179
    • (1988) Appl. Statist. , vol.37 , pp. 169-179
    • Lagakos, S.W.1    Louis, T.A.2
  • 23
    • 1542573405 scopus 로고    scopus 로고
    • Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models
    • Liang F. Wong W.H. Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models J. Amer. Statist. Assoc. 96 2001 653-666
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 26
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal R. Sampling from multimodal distributions using tempered transitions Statist. Comput. 4 1996 353-366
    • (1996) Statist. Comput. , vol.4 , pp. 353-366
    • Neal, R.1
  • 27
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R.A. Walker H.F. Mixture densities, maximum likelihood and the EM algorithm SIAM Rev. 26 1984 195-239
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 29
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Ser. B
    • Richardson S. Green P.J. On Bayesian analysis of mixtures with an unknown number of components (with discussion) J. Roy. Statist. Soc. Ser. B. 59 1997 731-792
    • (1997) J. Roy. Statist. Soc. , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 30
    • 21744461790 scopus 로고    scopus 로고
    • Semiparametric Bayesian analysis of survival data
    • Sinha D. Dey D.K. Semiparametric Bayesian analysis of survival data J. Amer. Statist. Assoc. 92 1997 1195-1212
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 1195-1212
    • Sinha, D.1    Dey, D.K.2
  • 31
    • 0037190443 scopus 로고    scopus 로고
    • A Bayesian model selection method with applications
    • Song X.Y. Lee S.L. A Bayesian model selection method with applications Comput. Statist. Data Anal. 40 2002 539-557
    • (2002) Comput. Statist. Data Anal. , vol.40 , pp. 539-557
    • Song, X.Y.1    Lee, S.L.2
  • 33
    • 0034354410 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models
    • Ser. B
    • Stephens M. Dealing with label switching in mixture models J. Roy. Statist. Soc. Ser. B 62 2000 795-809
    • (2000) J. Roy. Statist. Soc. , vol.62 , pp. 795-809
    • Stephens, M.1
  • 34
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner M.A. Wong W.H. The calculation of posterior distributions by data augmentation (with discussion) J. Amer. Statist. Assoc. 82 1987 528-540
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 35
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney L. Markov chains for exploring posterior distributions (with discussion) Ann. Statist. 22 1994 1701-1762
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 36
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney L. Kadane J.B. Accurate approximations for posterior moments and marginal densities J. Amer. Statist. Assoc. 81 1986 82-86
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.