메뉴 건너뛰기




Volumn 8, Issue 1, 1999, Pages 9-24

Learning fuzzy rules from data

Author keywords

Fuzzy algorithms; Fuzzy systems; If then rules; Machine learning

Indexed keywords


EID: 0033242063     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s005210050003     Document Type: Article
Times cited : (11)

References (17)
  • 2
    • 0003696226 scopus 로고
    • Extracting symbolic knowledge from artificial neural networks
    • Institut fur Informatik III, Universitat Bonn
    • Thrun SB. Extracting symbolic knowledge from artificial neural networks. Technical Report IAI-TR-93-5, Institut fur Informatik III, Universitat Bonn, 1993
    • (1993) Technical Report IAI-TR-93-5
    • Thrun, S.B.1
  • 6
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R, Diederich J, Tickle AB. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 1995; 8: 373-389
    • (1995) Knowledge-based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 8
    • 0002808756 scopus 로고
    • Supervised and unsupervised learning with fuzzy similarity for neural network-based fuzzy logic control systems
    • RR Yager, LA Zadeh (eds). Van Nostrand
    • Lin GT, Lee CSG. Supervised and unsupervised learning with fuzzy similarity for neural network-based fuzzy logic control systems. Fuzzy Sets Neural Networks and Soft Computing, RR Yager, LA Zadeh (eds). Van Nostrand, 1994
    • (1994) Fuzzy Sets Neural Networks and Soft Computing
    • Lin, G.T.1    Lee, C.S.G.2
  • 13
    • 0024646143 scopus 로고
    • Learning to control an inverted pendulum using neural networks
    • Anderson CW. Learning to Control an Inverted Pendulum Using Neural Networks. IEEE Control Systems Mag 1989; 15: 31-36
    • (1989) IEEE Control Systems Mag , vol.15 , pp. 31-36
    • Anderson, C.W.1
  • 14
    • 0023175348 scopus 로고
    • The original adaptive neural net broom-balancer
    • Philadelphia, PA, May
    • Widrow B. The original adaptive neural net broom-balancer. Proc IEEE Int Symposium on Circuits and Systems, Philadelphia, PA, May 1987 pp. 351-357
    • (1987) Proc IEEE Int Symposium on Circuits and Systems , pp. 351-357
    • Widrow, B.1
  • 15
    • 0024125413 scopus 로고
    • An adaptive 'broom balancer' with visual inputs
    • San Diego, CA, July
    • Tolat VV, Widrow B. An Adaptive 'broom balancer' with visual inputs. Proc IEEE Int Conf Neural Networks, San Diego, CA, July 1988, pp. II.641-II.647
    • (1988) Proc IEEE Int Conf Neural Networks
    • Tolat, V.V.1    Widrow, B.2
  • 16
    • 0009068251 scopus 로고    scopus 로고
    • Genetic algorithm for fine-tuning fuzzy rules for the cart-pole balancing system
    • Finn G. Genetic algorithm for fine-tuning fuzzy rules for the cart-pole balancing system. Australian Computer J 1996; 28: 128-137
    • (1996) Australian Computer J , vol.28 , pp. 128-137
    • Finn, G.1
  • 17
    • 0027680412 scopus 로고
    • The cart-pole experiment as a bench-mark for trainable controllers
    • Geva S, Sitte J. The cart-pole experiment as a bench-mark for trainable controllers. IEEE Control Systems Mag 1993; 13(5): 40-51
    • (1993) IEEE Control Systems Mag , vol.13 , Issue.5 , pp. 40-51
    • Geva, S.1    Sitte, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.