메뉴 건너뛰기




Volumn 2534, Issue , 2002, Pages 195-205

Extraction of logical rules from data by means of piecewise-linear neural networks

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; EXTRACTION; FUZZY INFERENCE; GEOMETRY; HEURISTIC METHODS; NEURAL NETWORKS; PIECEWISE LINEAR TECHNIQUES;

EID: 84949774169     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-36182-0_18     Document Type: Conference Paper
Times cited : (5)

References (29)
  • 2
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificical neural networks
    • R. Andrews, J. Diederich, and A.B. Tickle. Survey and critique of techniques for extracting rules from trained artificical neural networks. Knowledge Based Systems, 8:378–389, 1995.
    • (1995) Knowledge Based Systems , vol.8 , pp. 378-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 6
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, and K. Grabczewski. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 11:277–306, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquadt algorithm
    • M.T. Hagan and M. Menhaj. Training feedforward networks with the Marquadt algorithm. IEEE Transactions on Neural Networks, 5:989–993, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 12
    • 84949740922 scopus 로고
    • Ordering of neural network architectures
    • M. Holeňa. Ordering of neural network architectures. Neural Network World, 3:131–160, 1993.
    • (1993) Neural Network World , vol.3 , pp. 131-160
    • Holeňa, M.1
  • 13
    • 0028754281 scopus 로고
    • Lattices of neural network architectures
    • M. Holeňa. Lattices of neural network architectures. Neural Network World, 4:435–464, 1994.
    • (1994) Neural Network World , vol.4 , pp. 435-464
    • Holeňa, M.1
  • 14
    • 84974695520 scopus 로고    scopus 로고
    • Observational logic integrates data mining based on statistics and neural networks
    • D.A. Zighed, J. Komorowski, and J.M. Żytkov, editors, Springer Verlag, Berlin
    • M. Holeňa. Observational logic integrates data mining based on statistics and neural networks. In D.A. Zighed, J. Komorowski, and J.M. Żytkov, editors, Principles of Data Mining and Knowledge Discovery, pages 440–445. Springer Verlag, Berlin, 2000.
    • (2000) Principles of Data Mining and Knowledge Discovery , pp. 440-445
    • Holeňa, M.1
  • 16
    • 0001307541 scopus 로고
    • Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives
    • K. Hornik, M. Stinchcombe, H. White, and P. Auer. Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives. Neural Computation, 6:1262–1275, 1994.
    • (1994) Neural Computation , vol.6 , pp. 1262-1275
    • Hornik, K.1    Stinchcombe, M.2    White, H.3    Auer, P.4
  • 17
    • 0033082449 scopus 로고    scopus 로고
    • Using input parameter influences to support the decisions of feed-forward neural networks
    • P. Howes and N. Crook. Using input parameter influences to support the decisions of feed-forward neural networks. Neurocomputing, 24:191–206, 1999.
    • (1999) Neurocomputing , vol.24 , pp. 191-206
    • Howes, P.1    Crook, N.2
  • 18
    • 0034551785 scopus 로고    scopus 로고
    • Rule extraction by successive regularization
    • M. Ishikawa. Rule extraction by successive regularization. Neural Networks, 13:1171–1183, 2000.
    • (2000) Neural Networks , vol.13 , pp. 1171-1183
    • Ishikawa, M.1
  • 19
    • 0026627415 scopus 로고
    • Kolmogorov’s theorem and multilayer neural networks
    • V. Kůrková. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5:501–506, 1992.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kůrková, V.1
  • 20
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation can approximate any function
    • M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a non-polynomial activation can approximate any function. Neural Networks, 6:861–867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 21
    • 0242427979 scopus 로고    scopus 로고
    • Bounds for the computational power and learning complexity of analog neural nets
    • W. Maass. Bounds for the computational power and learning complexity of analog neural nets. SIAM Journal on Computing, 26:708–732, 1997.
    • (1997) SIAM Journal on Computing , vol.26 , pp. 708-732
    • Maass, W.1
  • 22
    • 0032812327 scopus 로고    scopus 로고
    • Rule-extraction by backpropagation of polyhedra
    • F. Maire. Rule-extraction by backpropagation of polyhedra. Neural Networks, 12:717–725, 1999.
    • (1999) Neural Networks , vol.12 , pp. 717-725
    • Maire, F.1
  • 23
    • 0032236619 scopus 로고    scopus 로고
    • On the complexity of recognizing regions computable by two-layered perceptrons
    • E.N. Mayoraz. On the complexity of recognizing regions computable by two-layered perceptrons. Annals of Mathematics and Artificial Intelligence, 24:129–153, 1998.
    • (1998) Annals of Mathematics and Artificial Intelligence , vol.24 , pp. 129-153
    • Mayoraz, E.N.1
  • 24
    • 0031274113 scopus 로고    scopus 로고
    • Knowledge-based fuzzy MLP for classification and rule generation
    • S. Mitra, R.K. De, and S.K. Pal. Knowledge-based fuzzy MLP for classification and rule generation. IEEE Transactions on Neural Networks, 8:1338–1350, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 1338-1350
    • Mitra, S.1    De, R.K.2    Pal, S.K.3
  • 25
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks, 11:748–768, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 28
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks
    • A.B. Tickle, R. Andrews, M. Golea, and J. Diederich. The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks. IEEE Transactions on Neural Networks, 9:1057–1068, 1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 29
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • H. Tsukimoto. Extracting rules from trained neural networks. IEEE Transactions on Neural Networks, 11:333–389, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 333-389
    • Tsukimoto, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.