메뉴 건너뛰기




Volumn 64, Issue 1, 1999, Pages 87-104

Possible biases induced by MCMC convergence diagnostics

Author keywords

Batch means; Bias; Convergence diagnostic; Estimation; Markov chain Monte Carlo

Indexed keywords


EID: 0033236319     PISSN: 00949655     EISSN: None     Source Type: Journal    
DOI: 10.1080/00949659908811968     Document Type: Article
Times cited : (43)

References (27)
  • 4
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • Cowles, M. K. and Carlin, B. P. (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Amer. Stat. Assoc., 91, 883-904.
    • (1996) J. Amer. Stat. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 5
    • 0042376950 scopus 로고    scopus 로고
    • A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    • Cowles, M. K. and Rosenthal, J. S. (1998) A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. Stat. and Comput., 8, 115-124.
    • (1998) Stat. and Comput. , vol.8 , pp. 115-124
    • Cowles, M.K.1    Rosenthal, J.S.2
  • 6
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to calculating marginal densities. J. Amer. Stat. Assoc., 85, 398-409.
    • (1990) J. Amer. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 7
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. (1990) Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Stat. Soc., 85, 972-985.
    • (1990) J. Amer. Stat. Soc. , vol.85 , pp. 972-985
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3    Smith, A.F.M.4
  • 8
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences. Stat. Sci., 7(4), 457-472.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 9
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721-741.
    • (1984) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 10
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • Bernardo, J. M. et al., Eds., Oxford University Press
    • Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian Statistics, 4 (Bernardo, J. M. et al., Eds.), 169-193. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 11
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. (1992) Practical Markov chain Monte Carlo. Stat. Sci., 7(4), 473-483.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.1
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 0000262406 scopus 로고
    • A slowly mixing Markov chain with implications for Gibbs sampling
    • Matthews, P. (1993) A slowly mixing Markov chain with implications for Gibbs sampling. Stat. Prob. Lett., 17, 231-236.
    • (1993) Stat. Prob. Lett. , vol.17 , pp. 231-236
    • Matthews, P.1
  • 15
    • 0000566364 scopus 로고
    • Computable bounds for convergence rates of Markov chains
    • Meyn, S. P. and Tweedie, R. L. (1994) Computable bounds for convergence rates of Markov chains. Ann. Appl. Prob., 4, 981-1011.
    • (1994) Ann. Appl. Prob. , vol.4 , pp. 981-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 17
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • Bernardo, J. M. et al., Eds., Oxford University Press
    • Raftery, A. E. and Lewis, S. (1992) How many iterations in the Gibbs sampler? In: Bayesian Statistics, 4 (Bernardo, J. M. et al., Eds.), 763-773. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 18
    • 0000569335 scopus 로고
    • Convergence diagnostics of the Gibbs sampler
    • Bernardo, J. M. et al., Eds., Oxford University Press
    • Roberts, G. O. (1992) Convergence diagnostics of the Gibbs sampler. In: Bayesian Statistics, 4, (Bernardo, J. M. et al., Eds.), 777-784. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 777-784
    • Roberts, G.O.1
  • 20
    • 0001096889 scopus 로고
    • Rates of convergence of Gibbs sampling for variance components models
    • Rosenthal, J. S. (1995a) Rates of convergence of Gibbs sampling for variance components models. Ann. Stat., 23, 740-761.
    • (1995) Ann. Stat. , vol.23 , pp. 740-761
    • Rosenthal, J.S.1
  • 21
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal, J. S. (1995b) Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Stat. Assoc., 90, 558-566.
    • (1995) J. Amer. Stat. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 22
    • 0000926886 scopus 로고
    • Convergence rates of Markov chains
    • Rosenthal, J. S. (1995c) Convergence rates of Markov chains. SIAM Review, 37, 387-405.
    • (1995) SIAM Review , vol.37 , pp. 387-405
    • Rosenthal, J.S.1
  • 23
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James Stein estimators
    • Rosenthal, J. S. (1996) Analysis of the Gibbs sampler for a model related to James Stein estimators. Stat. and Comput., 6, 269-275.
    • (1996) Stat. and Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 24
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Stat. Soc. Ser. B, 55, 3-24.
    • (1993) J. Roy. Stat. Soc. Ser. B , vol.55 , pp. 3-24
    • Smith, A.F.M.1    Roberts, G.O.2
  • 26
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. A. and Wong, W. H. (1987) The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Stat. Assoc., 82, 528-550.
    • (1987) J. Amer. Stat. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.