메뉴 건너뛰기




Volumn 4, Issue 4, 2004, Pages 431-463

Relational learning as search in a critical region

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; CONSTRAINT THEORY; LOGIC PROGRAMMING; PHASE TRANSITIONS; PROBABILITY;

EID: 2542464090     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244304773936018     Document Type: Conference Paper
Times cited : (40)

References (45)
  • 9
    • 0030108241 scopus 로고    scopus 로고
    • Experimental results on the crossover point in random 3-SAT
    • J.M. Crawford and L.D Auton. Experimental results on the crossover point in random 3-SAT. Artificial Intelligence, 81:31-58, 1996.
    • (1996) Artificial Intelligence , vol.81 , pp. 31-58
    • Crawford, J.M.1    Auton, L.2
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10 (7):1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 12
    • 0008799385 scopus 로고    scopus 로고
    • Application of machine learning in finite element computation
    • R.S. Michalski, I. Bratko, and M. Kubat, editors. Wiley
    • B. Dolsak, I. Bratko, and A. Jezeraik. Application of machine learning in finite element computation. In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining, pages 147-171. Wiley, 1998.
    • (1998) Machine Learning and Data Mining , pp. 147-171
    • Dolsak, B.1    Bratko, I.2    Jezeraik, A.3
  • 13
    • 0026972455 scopus 로고
    • PAC-learnability of determinate logic programs
    • Pittsburgh, PA
    • S. Džeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic programs. In Proceedings of COLT-92, pages 128-134, Pittsburgh, PA, 1992.
    • (1992) Proceedings of COLT-92 , pp. 128-134
    • Džeroski, S.1    Muggleton, S.2    Russell, S.3
  • 15
    • 0034320732 scopus 로고    scopus 로고
    • Phase transitions in relational learning
    • A. Giordana and L. Saitta. Phase transitions in relational learning. Machine Learning, 41(2):17-251, 2000.
    • (2000) Machine Learning , vol.41 , Issue.2 , pp. 17-251
    • Giordana, A.1    Saitta, L.2
  • 17
    • 0342984489 scopus 로고    scopus 로고
    • Analyzing relational learning in the phase transition framework
    • Stanford, CA, July. Morgan Kaufmann
    • A. Giordana, L. Saitta, M. Sebag, and M. Botta. Analyzing relational learning in the phase transition framework. In 17th International Conference on Machine Learning, pages 311-318, Stanford, CA, July 2000. Morgan Kaufmann.
    • (2000) 17th International Conference on Machine Learning , pp. 311-318
    • Giordana, A.1    Saitta, L.2    Sebag, M.3    Botta, M.4
  • 22
    • 0031624443 scopus 로고    scopus 로고
    • Learning first order universal Horn expression
    • Madison, WI
    • R. Khardon. Learning first order universal Horn expression. In Proceedings of COLT-98, pages 154-165, Madison, WI, 1998.
    • (1998) Proceedings of COLT-98 , pp. 154-165
    • Khardon, R.1
  • 23
    • 0342984487 scopus 로고
    • A polynomial approach to the constructive induction of structural knowledge
    • J.U. Kietz and K. Morik. A polynomial approach to the constructive induction of structural knowledge. Machine Learning, 14:193-218, 1994.
    • (1994) Machine Learning , vol.14 , pp. 193-218
    • Kietz, J.U.1    Morik, K.2
  • 24
    • 0000183134 scopus 로고
    • Relating chemical activity to structure: An examination of ILP successes
    • R.D. King, A. Srinivasan, and M.J.E. Stenberg. Relating chemical activity to structure: an examination of ILP successes. New Generation Computing, 13:411-433, 1995.
    • (1995) New Generation Computing , vol.13 , pp. 411-433
    • King, R.D.1    Srinivasan, A.2    Stenberg, M.J.E.3
  • 25
    • 84937397355 scopus 로고    scopus 로고
    • Theta-subsumption in a constraint satisfaction perspective
    • Springer Verlag, LNAI 2157
    • J. Maloberti and M. Sebag. Theta-subsumption in a constraint satisfaction perspective. In Proceedings of Inductive Logic Programming, pages 164-178. Springer Verlag, LNAI 2157, 2001.
    • (2001) Proceedings of Inductive Logic Programming , pp. 164-178
    • Maloberti, J.1    Sebag, M.2
  • 26
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, J. Carbonell, and T. Mitchell, editors, Los Altos, CA. Morgan Kaufmann
    • R. Michalski. A theory and methodology of inductive learning. In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 83-134, Los Altos, CA, 1983. Morgan Kaufmann.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R.1
  • 31
    • 77951503082 scopus 로고
    • Inverse entailment and PROGOL
    • S. Muggleton. Inverse entailment and PROGOL. New Gen. Comput., 13:245-286, 1995.
    • (1995) New Gen. Comput. , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 32
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • S. Muggleton and L. De Raedt. Inductive logic programming: theory and methods. Journal of Logic Programming, 19/20:629-679, 1994.
    • (1994) Journal of Logic Programming , vol.19-20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 33
    • 0002304628 scopus 로고
    • Efficient induction of logic programs
    • S. Muggleton, editor. Academic Press, London, UK
    • S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming. Academic Press, London, UK, 1992.
    • (1992) Inductive Logic Programming
    • Muggleton, S.1    Feng, C.2
  • 35
    • 8844261754 scopus 로고
    • The utility of knowledge in inductive learning
    • M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Machine Learning, 9: 57-94, 1992.
    • (1992) Machine Learning , vol.9 , pp. 57-94
    • Pazzani, M.J.1    Kibler, D.2
  • 36
    • 0001602577 scopus 로고
    • A note on inductive generalization
    • Edinburgh University Press
    • G. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5, pages 153-163. Edinburgh University Press, 1970.
    • (1970) Machine Intelligence , vol.5 , pp. 153-163
    • Plotkin, G.1
  • 37
    • 0030110022 scopus 로고    scopus 로고
    • An empirical study of phase transitions in binary constraint satisfaction problems
    • P. Prosser. An empirical study of phase transitions in binary constraint satisfaction problems. Artificial Intelligence, 81:81-110, 1996.
    • (1996) Artificial Intelligence , vol.81 , pp. 81-110
    • Prosser, P.1
  • 38
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266, 1990.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, R.1
  • 39
    • 33744584654 scopus 로고
    • Induction of decision trees
    • R.J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, R.J.1
  • 40
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 41
    • 0033889073 scopus 로고    scopus 로고
    • Resource-bounded relational reasoning: Induction and deduction through stochastic matching
    • M. Sebag and C. Rouveirol. Resource-bounded relational reasoning: Induction and deduction through stochastic matching. Machine Learning, 38:41-62, 2000.
    • (2000) Machine Learning , vol.38 , pp. 41-62
    • Sebag, M.1    Rouveirol, C.2
  • 42
    • 0030105626 scopus 로고    scopus 로고
    • Locating the phase transition in binary constraint satisfaction problems
    • B.M. Smith and M.E. Dyer. Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence, 81:155-181, 1996.
    • (1996) Artificial Intelligence , vol.81 , pp. 155-181
    • Smith, B.M.1    Dyer, M.E.2
  • 43
  • 45
    • 0028529156 scopus 로고
    • Exploiting the deep structure of constraint problems
    • C.P. Williams and T. Hogg. Exploiting the deep structure of constraint problems. Artificial Intelligence, 70:73-117, 1994.
    • (1994) Artificial Intelligence , vol.70 , pp. 73-117
    • Williams, C.P.1    Hogg, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.